一、了解缺失值

  • 通常使用 NA('not available')来代指缺失值
  • 在Pandas的数据结构中,缺失值使用 NaN('Not a Number')进行标识

除了汇总统计方法,还可以使用isnull()来对数据中缺失的样本占比、特征大致的缺失情况进行了解。

>>> df =pd.DataFrame({'one':pd.Series([1,2,3],index=['a','b','c']),
... 'two':pd.Series([1,3,2,7],index=['a','b','c','d']),
... 'three':pd.Series([3,8,3],index=['d','a','c'])})
>>> df
one two three
a 1.0 1 8.0
b 2.0 3 NaN
c 3.0 2 3.0
d NaN 7 3.0 #缺失值的数量分析
>>> df.isnull()
one two three
a False False False
b False False True
c False False False
d True False False >>> df.isnull().sum()
one 1
two 0
three 1
dtype: int64

二、缺失值填充

  使用fillna()方法进行缺失值填补

填充方式分为以下几种:

(1)使用同一个值填补所有的缺失值

>>> df.fillna('用我填充')
one two three
a 1 1 8
b 2 3 用我填充
c 3 2 3
d 用我填充 7 3

(2)向前填充、向后填充--->通过设置参数method参数来实现

method参数 说明
ffill或pad 向前填充值
bfill或backfill 向后填充值
#向前填充
>>> df.fillna(method='pad')
one two three
a 1.0 1 8.0
b 2.0 3 8.0
c 3.0 2 3.0
d 3.0 7 3.0 #向后填充
>>> df.fillna(method='bfill')
one two three
a 1.0 1 8.0
b 2.0 3 3.0
c 3.0 2 3.0
d NaN 7 3.0

(3)对不同列的缺失值使用不同的值进行填补

  可以使用列表的方式,如下:

>>> df.fillna({'one':1,'three':3})
one two three
a 1.0 1 8.0
b 2.0 3 3.0
c 3.0 2 3.0
d 1.0 7 3

(4)使用一个Pandas的自动对齐功能进行填补

   这也是最常使用的一种方式

>>> df.fillna(df.mean())
one two three
a 1.0 1 8.000000
b 2.0 3 4.666667
c 3.0 2 3.000000
d 2.0 7 3.000000

  

6-Pandas之缺失值处理的更多相关文章

  1. Python Pandas找到缺失值的位置

    python pandas判断缺失值一般采用 isnull(),然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺 ...

  2. pandas判断缺失值的办法

    参考这篇文章: https://blog.csdn.net/u012387178/article/details/52571725 python pandas判断缺失值一般采用 isnull(),然而 ...

  3. Pandas对缺失值的处理

    Pandas使用这些函数处理缺失值: isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃.删除缺失值 axis : 删除行还是列,{0 or 'index', ...

  4. pandas 处理缺失值(连续值取平均,离散值fillna"<unk>")

    # 2.1处理缺失值,连续值用均值填充 continuous_fillna_number = [] for i in train_null_ix: if(i in continuous_ix): me ...

  5. python-数据描述与分析2(利用Pandas处理数据 缺失值的处理 数据库的使用)

    2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它 ...

  6. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  7. Python pandas 0.19.1 Intro to Data Structures 数据结构介绍 文档翻译

    官方文档链接http://pandas.pydata.org/pandas-docs/stable/dsintro.html 数据结构介绍 我们将以一个快速的.非全面的pandas的基础数据结构概述来 ...

  8. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  9. Pandas 常见的基本方法

    说明:文章所有内容均截选自实验楼教程[Pandas 使用教程],想要查看教程完整内容,点击教程即可~ 前言: Pandas 是非常著名的开源数据处理工具,我们可以通过它对数据集进行快速读取.转换.过滤 ...

  10. pandas常用

    #python中的pandas库主要有DataFrame和Series类(面向对象的的语言更愿意叫类) DataFrame也就是#数据框(主要是借鉴R里面的data.frame),Series也就是序 ...

随机推荐

  1. 乐观锁&CAS问题

    悲观者与乐观者的做事方式完全不一样,悲观者的人生观是一件事情我必须要百分之百完全控制才会去做,否则就认为这件事情一定会出问题:而乐观者的人生观则相反,凡事不管最终结果如何,他都会先尝试去做,大不了最后 ...

  2. 浏览器缓存_HTTP强缓存和协商缓存

    浏览器缓存 浏览器缓存是浏览器在本地磁盘对用户最近请求过的文档进行存储,当访问者再次访问同一页面时,浏览器就可以直接从本地磁盘加载文档. 所以根据上面的特点,浏览器缓存有下面的优点: 减少冗余的数据传 ...

  3. vue 3.0 体验,vue 3.0新特性

    前言 昨天不是尤雨溪 不是刚在B站 直播玩了,分享了vue-next v3.0.0-beta.1 版本 哈哈, 不要太刺激哦 6大亮点 Performance:性能更比Vue 2.0强. Tree s ...

  4. 简单的MVC框架

    效果图: 源码下载:https://github.com/doyoulaikeme/DotNetSample/tree/master/DotNetSample4/easyMVCFramework

  5. Scala 基础(二):sbt介绍与构建Scala项目

    一.sbt简介 sbt是类似ANT.MAVEN的构建工具,全称为Simple build tool,是Scala事实上的标准构建工具. 主要特性: 原生支持编译Scala代码和与诸多Scala测试框架 ...

  6. 爬虫页面解析 lxml 简单教程

    一.与字符串的相互转换 1.字符串转变为etree 对象 import lxml.html tree = lxml.html.fromstring(content) # content 字符串对象 2 ...

  7. C# - 设计- Struct与Class的选择

    选择Struct的原则 该类型的实例较小且通常为短生存期,或者通常嵌入到其他对象中. 它以逻辑方式表示单个值,类似于基元类型( int .等 double ). 它的实例大小为16字节. 它是不可变的 ...

  8. Python 爬取 42 年高考数据,告诉你高考为什么这么难?

    作者 | 徐麟 历年录取率 可能很多经历过高考的人都不知道高考的全称,高考实际上是普通高等学校招生全国统一考试的简称.从1977年国家恢复高考制度至今,高考经历了许多的改革,其中最为显著的变化就是录取 ...

  9. IDEA 2020版破解

    这期教一下大家如何破解IDEA 最新版破解教程 有以前的idea建议卸载哈~安装最新版的版本 一:我们首先去idea官网下载最新版 下方是idae官网2020最新链接 https://www.jetb ...

  10. Nginx之伪404( root与alias )

    目录 一.现象 二.root与alias的区别 三.建议 四.写在最后 一.现象   人类善于伪装,机器某些时候也善于伪装:Nginx请求看到404,第一反应就是文件不存在:但我们去检查的时候,它就正 ...