Tensorflow基本概念

  • 使用图(graphs)来表示计算任务
  • 在被称之为会话(Session)的上下文(context)中执行图
  • 使用tensor表示数据
  • 通过变量(Variable)维护状态
  • 使用feed和fetch可以为任意的操作赋值或者从其中获取数据

Tensorflow是一个编程系统,使用图(graphs)来表示计算任务,图(graphs)中的节点称之为op
(operation),一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。Tensor 看作是
一个 n 维的数组或列表。图必须在会话(Session)里被启动。

Tensorflow结构

创建图,启动图

#2-1 创建图,启动图
#创建一个常量op
m1=tf.constant([[3,3]])
#创建一个常量op
m2=tf.constant([[2],[3]])
#创建一个矩阵乘法op
product=tf.matmul(m1,m2)
print(product) with tf.compat.v1.Session() as sess: # run(product)触发了图中的3个op
result = sess.run(product)
print(result)

结果为:

变量

#2-2变量
#创建一个变量初始化0
state=tf.Variable(0,name='counter')
#创建op,作用是使state加1
new_value=tf.add(state,1)
#赋值op
update=tf.compat.v1.assign(state,new_value) with tf.compat.v1.Session() as sess:
#变量初始化
sess.run(tf.compat.v1.global_variables_initializer())
print(sess.run(state))
for _ in range(5):
sess.run(update)
print(sess.run(state))

输出为:

Fetch and Feed

#2-3Fetch and Feed
#Fetch
input1=tf.constant(3.0)
input2=tf.constant(2.0)
input3=tf.constant(5.0) add=tf.add(input2,input3)
mul=tf.multiply(input1,add) with tf.compat.v1.Session() as sess:
result=sess.run([mul,add])
print(result) #Feed
#创建占位符
input1=tf.compat.v1.placeholder(tf.float32)
input2=tf.compat.v1.placeholder(tf.float32)
output=tf.multiply(input1,input2) with tf.compat.v1.Session() as sess:
#feed的数据以字典传入
print(sess.run(output,feed_dict={input1:[7.],input2:[2.]}))

输出为:

线性模型

import numpy as np

#使用np生成100个随机点
x_data=np.random.rand(100)
y_data=x_data*0.1+0.2 #构造一个线性模型
b=tf.Variable(0.)
k=tf.Variable(0.)
y=k*x_data+b #二次代价函数
loss=tf.reduce_mean(tf.square(y_data-y))
#定义一个梯度下降法来进行训练的优化器
optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.2) #最小化代价函数
train=optimizer.minimize(loss) #对变量进行初始化
init=tf.compat.v1.global_variables_initializer() with tf.compat.v1.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step%20==0:
print(step,sess.run([k,b]))

输出为:

Tensorflow-基础使用的更多相关文章

  1. TensorFlow基础

    TensorFlow基础 SkySeraph  2017 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Over ...

  2. TensorFlow基础笔记(0) 参考资源学习文档

    1 官方文档 https://www.tensorflow.org/api_docs/ 2 极客学院中文文档 http://www.tensorfly.cn/tfdoc/api_docs/python ...

  3. TensorFlow基础笔记(3) cifar10 分类学习

    TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognit ...

  4. TensorFlow基础剖析

    TensorFlow基础剖析 一.概述 TensorFlow 是一个使用数据流图 (Dataflow Graph) 表达数值计算的开源软件库.它使 用节点表示抽象的数学计算,并使用 OP 表达计算的逻 ...

  5. 05基于python玩转人工智能最火框架之TensorFlow基础知识

    从helloworld开始 mkdir mooc # 新建一个mooc文件夹 cd mooc mkdir 1.helloworld # 新建一个helloworld文件夹 cd 1.helloworl ...

  6. tensorflow基础篇-1

    1.使用占位符和变量 import tensorflow as tf import numpy as np #-----创建变量并初始化----------- def first(): my_var= ...

  7. TensorFlow应用实战 | TensorFlow基础知识

    挺长的~超出估计值了~预计阅读时间20分钟. 从helloworld开始 mkdir 1.helloworld cd 1.helloworldvim helloworld.py 代码: # -*- c ...

  8. tensorflow基础练习:线性模型

    TensorFlow是一个面向数值计算的通用平台,可以方便地训练线性模型.下面采用TensorFlow完成Andrew Ng主讲的Deep Learning课程练习题,提供了整套源码. 线性回归 多元 ...

  9. TensorFlow 基础概念

    初识TensorFlow,看了几天教程后有些无聊,决定写些东西,来夯实一下基础,提供些前进动力. 一.Session.run()和Tensor.eval()的区别: 最主要的区别就是可以使用sess. ...

  10. TensorFlow 基础知识

    参考资料: 深度学习笔记目录 向机器智能的TensorFlow实践 TensorFlow机器学习实战指南 Nick的博客 TensorFlow 采用数据流图进行数值计算.节点代表计算图中的数学操作,计 ...

随机推荐

  1. 4. 上新了Spring,全新一代类型转换机制

    目录 ✍前言 版本约定 ✍正文 PropertyEditor设计缺陷 新一代类型转换 Converter 代码示例 不足 ConverterFactory 代码示例 不足 GenericConvert ...

  2. Containerd 的前世今生和保姆级入门教程

    原文链接:https://fuckcloudnative.io/posts/getting-started-with-containerd/ 1. Containerd 的前世今生 很久以前,Dock ...

  3. MySQL获取上月第一天、上月最后日、本月第一天、本月最后日的方法

    直接贴SQL语句了 #上月第一天 SELECT DATE_FORMAT(DATE_SUB(CURDATE(),INTERVAL 1 MONTH),'%Y-%m-01'); #上月最后日 SELECT ...

  4. apk获取md5值的方法

    最简单的获取md5值和sha1值的方法,就是使用在线工具,在线上传.keystore或apk文件,就可以获取其sha1值 https://www.yunedit.com/sha1 安卓应用都使用一个签 ...

  5. Raft算法系列教程3:日志复制

    1.日志复制的过程 Leader选出后,就开始接收客户端的请求.Leader把请求作为日志条目(Log entries)加入到它的日志中,然后并行的向其他服务器发起 AppendEntries RPC ...

  6. 算法竞赛入门经典第二版第二章习题-(练习Java和C++语法)

    习题2-1水仙花数(daffodil) 输出1000-999中所有的水仙花数.若三位数ABC满足ABC = A3+B3+C3,则称其为水仙花数. Java: package suanfa; publi ...

  7. 解决 Idea 下 Lombok 无法使用

    解决:    第一步,项目导入 Lombok 依赖 <dependency> <groupId>org.projectlombok</groupId> <ar ...

  8. VS2015配置环境支持opencv3库(网络方法总结)

    今天安装了opencv3.4.1的版本,之前一直是在ubuntu上做的,本次在windows10上使用VS2015来开发. VS2015是之前安装的,能正常的编译程序. 1. 安装opencv,下载o ...

  9. ubuntu安装nfs服务

    安装: sudo apt-get install nfs-kernel-server 修改配置文件 /etc/exports 增加以下内容: /NFS *(rw,sync,no_root_squash ...

  10. Plugin 插件体系

    Solon 的插件也可以叫扩展组件,相当于Spring 的 starter.Solon已经提供了大量的基础插件,但对第三方的框架适配目前较少. 插件 说明 boot插件:: 说明 org.noear: ...