POJ2104 K-th Number[主席树]【学习笔记】
Time Limit: 20000MS | Memory Limit: 65536K | |
Total Submissions: 51440 | Accepted: 17594 | |
Case Time Limit: 2000MS |
Description
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.
Input
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).
Output
Sample Input
7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3
Sample Output
5
6
3
Hint
Source
document:
1.http://blog.csdn.net/metalseed/article/details/8045038
2.http://www.cnblogs.com/oyking/p/3230296.html
1.两种建树写法,貌似用引用比较快
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+;
int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m,mp[N],l,r,k;
struct data{
int v,id;
bool operator <(const data &r)const{return v<r.v;}
}a[N];
struct node{
int lc,rc,size;
}t[N*];
int cnt=,root[N];
void insert(int num,int &x,int l,int r){//printf("ins %d %d %d\n",l,r,x);
cnt++;
t[cnt]=t[x];x=cnt;
++t[x].size;
if(l==r) return;
int mid=(l+r)>>;
if(num<=mid) insert(num,t[x].lc,l,mid);
else insert(num,t[x].rc,mid+,r);
}
int ins(int num,int pre,int l,int r){
int x=++cnt;
t[x]=t[pre]; ++t[x].size;
if(l==r) return x;
int mid=(l+r)>>;
if(num<=mid) t[x].lc=ins(num,t[x].lc,l,mid);
else t[x].rc=ins(num,t[x].rc,mid+,r);
return x;
}
int query(int i,int j,int l,int r,int k){
if(l==r) return l;
int ls=t[t[j].lc].size-t[t[i].lc].size;
int mid=(l+r)>>;
if(k<=ls) return query(t[i].lc,t[j].lc,l,mid,k);
else return query(t[i].rc,t[j].rc,mid+,r,k-ls);
} int main(){
n=read();m=read();
for(int i=;i<=n;i++) a[i].v=read(),a[i].id=i;
sort(a+,a++n);
for(int i=;i<=n;i++) mp[a[i].id]=i; for(int i=;i<=n;i++){
//root[i]=ins(mp[i],root[i-1],1,n);
root[i]=root[i-];
insert(mp[i],root[i],,n);
}
while(m--){
l=read();r=read();k=read();
printf("%d\n",a[query(root[l-],root[r],,n,k)].v); }
}
[2017-03-02]
在扔上一点课件上的东西,虽然感觉跟前面的总结有点重复,但还是有点用吧
函数式编程:不修改,只新增(保留所有的历史版本)。
@ 考虑一次单点修改对整棵树的信息的影响;只有一条链上的
信息真正改变了。
@ 函数式线段树:对于线段树所有的单点修改操作,不真正的
修改,而是通过新增节点的方式来构建。
由于除了链上的信息是不变的,所以把直接指向它们就可以
了。
@ 所以整棵线段树是动态的,要用动态的节点来实现。
@ 只需要记录根节点,就能访问“第x 次修改后的线段树”
了。
新模板:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define lc(x) t[x].lc
#define rc(x) t[x].rc
typedef long long ll;
const int N=1e5+;
int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m,mp[N],l,r,k;
struct Fode{
int v,id;
bool operator <(const data &r)const{return v<r.v;}
}a[N];
struct node{
int lc,rc,size;
}t[N*];
int sz,root[N];
void fIns(int &x,int l,int r,int p){
t[++sz]=t[x];x=sz;
t[x].size++;
if(l==r) return;
int mid=(l+r)>>;
if(p<=mid) fIns(t[x].lc,l,mid,p);
else fIns(t[x].rc,mid+,r,p);
}
int fQue(int x,int y,int l,int r,int k){
if(l==r) return l;
int lsize=t[lc(y)].size-t[lc(x)].size;
int mid=(l+r)>>;
if(k<=lsize) return fQue(lc(x),lc(y),l,mid,k);
else return fQue(rc(x),rc(y),mid+,r,k-lsize);
} int main(){
freopen("in","r",stdin);
n=read();m=read();
for(int i=;i<=n;i++) a[i].v=read(),a[i].id=i;
sort(a+,a++n);
for(int i=;i<=n;i++) mp[a[i].id]=i; for(int i=;i<=n;i++) root[i]=root[i-],fIns(root[i],,n,mp[i]);
while(m--){
l=read();r=read();k=read();
printf("%d\n",a[fQue(root[l-],root[r],,n,k)].v);
}
}
POJ2104 K-th Number[主席树]【学习笔记】的更多相关文章
- 主席树学习笔记(静态区间第k大)
题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输出 ...
- 主席树学习笔记-hdu-2665
主席树就是对每个历史版本都建了一颗线段树,这样我们在统计一些问题的时候,对于一个区间[L,R]的询问,就可以利用前缀和的思想找到第L-1和第R颗历史版本的线段树来处理查找.由于这样空间需求就增大了,注 ...
- 【poj2104】K-th Number 主席树
题目描述 You are working for Macrohard company in data structures department. After failing your previou ...
- poj2104 k-th number 主席树入门讲解
poj2104 k-th number 主席树入门讲解 定义:主席树是一种可持久化的线段树 又叫函数式线段树 刚开始学是不是觉得很蒙逼啊 其实我也是 主席树说简单了 就是 保留你每一步操作完成之后 ...
- zkw线段树学习笔记
zkw线段树学习笔记 今天模拟赛线段树被卡常了,由于我自带常数 \(buff\),所以学了下zkw线段树. 平常的线段树无论是修改还是查询,都是从根开始递归找到区间的,而zkw线段树直接从叶子结点开始 ...
- poj 2104 K-th Number 主席树+超级详细解释
poj 2104 K-th Number 主席树+超级详细解释 传送门:K-th Number 题目大意:给出一段数列,让你求[L,R]区间内第几大的数字! 在这里先介绍一下主席树! 如果想了解什么是 ...
- 仙人掌&圆方树学习笔记
仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...
- 线段树学习笔记(基础&进阶)(一) | P3372 【模板】线段树 1 题解
什么是线段树 线段树是一棵二叉树,每个结点存储需维护的信息,一般用于处理区间最值.区间和等问题. 线段树的用处 对编号连续的一些点进行修改或者统计操作,修改和统计的复杂度都是 O(log n). 基础 ...
- [POJ2104] K – th Number (可持久化线段树 主席树)
题目背景 这是个非常经典的主席树入门题--静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输 ...
随机推荐
- 组合模式 - Composite
Composite Pattern,将对象组合成树形结构以表示’部分-整体’的层次关系,用户对单对象和组合部件的使用具有一致性. 实现方式: 透明方式:接口统一: 安全方式:不统一: 参考:
- 为什么document.firstChild找到的不是html节点
DOM是针对HTML4.01开发的,我们现在是XHTML1.0. 所以要想使用核心DOM中的属性和方法,必须去掉DTD类型定义. <!DOCTYPE html PUBLIC "-//W ...
- hibernate中表关系为多对多时,如何只删除中间表数据
先说问题:我遇到的问题是,在用户和用户组对象关系中他们是多对多关系.所以中间是成在一张中间表的.经理要求当逻辑删除对象数据时,必须删除中间表中的数据. hibernate是面向对象操作sql语句的,如 ...
- UDS(ISO14229-2006) 汉译(No.7 应用层协议)【未完,待续】
7.1定义 应用层协议通常作为确认消息的传输,意味着从客户端发送的每一个请求都将有由服务器端产生的与之相对的响应. 唯一的例外在于:例如使用了功能寻址方式,或者该请求/指示没有指定生成响应/确定的少数 ...
- jQuery弹出关闭遮罩层
效果体验:http://keleyi.com/keleyi/phtml/jquery/9.htm 完整代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XH ...
- 【高级功能】使用canvas元素(第一部分)
1. 开始使用 canvas 元素 canvas 元素非常简单,这是指它所有的功能都体现在一个JavaScript对象上,因此该元素本身只有两个属性:width 和 height. canvas 元素 ...
- JavaScript基本语法(四)
一. JavaScript 函数 1.函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块.我们可以将一些常用的代码封装成函数,待用到的时候就能直接调用使用.利用函数可以使代码的组织结构 ...
- Sharepoint学习笔记—习题系列--70-573习题解析 -(Q136-Q138)
Question 136You need to create a custom content type and specify the content type ID.What should you ...
- js(javascript)与OC(Objective-C)交互
实质上oc与js的通信交互就是发送消息,也即函数调用,iOS7以后官方公布JavaScriptCore framework中很方便我们对他们之间的相互调用.在以前我们只能通过UIWebView的UIW ...
- [Unity游戏开发]向量在游戏开发中的应用(二)
本文已同步发表在CSDN:http://blog.csdn.net/wenxin2011/article/details/50972976 在上一篇博客中讲了利用向量方向的性质来解决问题.这篇博客将继 ...