1.普通的求幂方法:

时间复杂度为O(n),对于比较大的数在1s限时内可能会TLE

int pow(int base,int p){
int ans=1; for(int i=1;i<=p;i++)
ans*=base; return ans;
}

2.快速幂:

时间复杂度为logn

(1)结合位运算

原理:指数p可转化为2进制形式

  则basep=basei(1)*2^0+i(2)*2^1+i(3)*2^2+……

      =basei(1)*2^0*basei(2)*2^1*basei(3)*2^2*……

当i(n)=0时相当于乘了1,也就相当于什么也没乘,而每次待乘的数都是base2^k,乘不乘由系数i(k+1)决定,但不管乘不乘,下一次待乘的数都是base2^(k+1)即base2*2^k也就是(base2^k)2

代码实现:

long long fastpow(long long base,long long p){
long long ans=1; while(p!=0){
if(p&1!=0)//如果这一位(二进制最后一位)为1,则乘上待乘的数(或P%2==1)
ans*=base; base*=base;
p>>=1;(或者p/=2)
} return ans;
}

(2)结合模运算

我们知道basep%d=(base%d)*(base%d)*(base%d)*……%d

        =(base%d)p%d

上代码:

 long long fastpowmod(long long base,long long p,long long d){
long long ans=1;
base%=d; while(p!=0){
if(p&1!=0)
ans=ans*base%d; base=base*base%d;
p>>=1;
}
          ans%=d;//0次方特判 return ans;
}

求幂&&快速幂&&位运算的更多相关文章

  1. HDU 4549 矩阵快速幂+快速幂+欧拉函数

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  2. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

  3. 欧几里得算法(及扩展)&&快速幂(二分+位运算)

    最近在二中苦逼地上课,天天听数论(当然听不懂) 但是,简单的还是懂一点的 1.欧几里得算法 说得这么高级干什么,gcd入门一个月的人都会吧,还需要BB? 证明可参照其他博客(不会),主要就是gcd(a ...

  4. nyoj 102 次方求摸 快速幂

    点击打开链接 次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测 ...

  5. hdu4549 M斐波那契数列 矩阵快速幂+快速幂

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...

  6. 求1+2+……+n(位运算)

    求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). 我发现网上的做法都很神,各种理由编译的巧妙办法,就能间接 ...

  7. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  8. 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

    读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...

  9. hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】

    #include<cstdio> #include<string> #include<iostream> #include<vector> #inclu ...

随机推荐

  1. 源码剖析ThreadPoolExecutor线程池及阻塞队列

    本文章对ThreadPoolExecutor线程池的底层源码进行分析,线程池如何起到了线程复用.又是如何进行维护我们的线程任务的呢?我们直接进入正题: 首先我们看一下ThreadPoolExecuto ...

  2. python工业互联网应用实战5—Django Admin 编辑界面和操作

    1.1. 编辑界面 默认任务的编辑界面,对于model属性包含"choices"会自动显示下来列表供选择,"datetime"数据类型也默认提供时间选择组件,如 ...

  3. The 10th Shandong Provincial Collegiate Programming Contest(11/13)

    $$The\ 10th\ Shandong\ Provincial\ Collegiate\ Programming\ Contest$$ \(A.Calandar\) 签到 //#pragma co ...

  4. Codeforces Round #650 (Div. 3) A. Short Substrings

    题目链接:https://codeforces.com/contest/1367/problem/A 题意 给出一个字符串 $t$,找出原字符串 $s$,$t$ 由 $s$ 从左至右的所有长为 $2$ ...

  5. C. Table Decorations

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  6. hdu4217 Data Structure?

    Problem Description Data structure is one of the basic skills for Computer Science students, which i ...

  7. Codeforces Round #614 (Div. 1) A. NEKO's Maze Game (思维,模拟)

    题意:有一个\(2\)X\(n\)的矩阵,你想从\((1,1)\)走到\((2,n)\),每次可以向上下左右四个方向走,但在某些时间段某个点会被堵住,如果已经被堵住,那么即恢复正常,每次对某个点操作, ...

  8. 找工作面试题记录与参考资料(Golang/C++/计算机网络/操作系统/算法等)

    记录下去年(2020年)找工作的面试题及参考资料. C++ 智能指针的实现原理 多态的实现原理[2] C++11/14/17新特性[3] 手写memcpy和memmove[4] 介绍下boost库 计 ...

  9. Linux命令之find命令中的-mtime参数

    有关find -mtime的参数解释 mtime参数的理解应该如下: -mtime n 按照文件的更改时间来找文件,n为整数. n表示文件更改时间距离为n天, -n表示文件更改时间距离在n天以内,+n ...

  10. dll的注册与反注册

    regsvr32.exe是32位系统下使用的DLL注册和反注册工具,使用它必须通过命令行的方式使用,格式是:regsvr32 [/i[:cmdline]] DLL文件名命令可以在"开始→运行 ...