Nikitosh 和异或

其实题意已经简单的不能再简单了,所以就不讲了。

因为题目中 \(1\leq l_1 \leq r_1 <l_2 \leq r_2\leq N\),所以显然对于最终答案,总有一个 \(x\) 满足 \(r_1\leq x<l_2\)。

那么就可以不断尝试以那个点为 \(x\),来求出答案,具体方法如下:

设 \(l_i=max_{1\leq l \leq r\leq i}\{a_l\bigoplus a_{l+1}\bigoplus..\bigoplus a_r\}\),\(r_i=max_{i\leq l\leq r\leq N}\{a_l\bigoplus a_{l+1}\bigoplus..\bigoplus a_r\}\)。

那么 \(ans=max_{1\leq i<N}\{l_i+r_{i+1}\}\),而关键在于怎么求 \(l_i,r_i\)。

这里引入一个概念:异或前缀和,即 \(S_i=a_0\bigoplus a_1\bigoplus a_2\bigoplus...\bigoplus a_i\)。(其中 \(a_0=0\))

那么 \(l_i=max_{1\leq j< i}\{S_i\bigoplus S_j\}\),\(r_i=max_{i< j\leq N}\{S'_i\bigoplus S'_j\}\)。(其中 \(S'_i=a_N\bigoplus a_{N-1}\bigoplus...\bigoplus a_i\))

然后就是简单的 trie 贪心求最大异或对了,但是还有几处细节要注意,都写在代码里了。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <iostream>
#define N 9000010
using namespace std; int n, trie[N][2], l[N], r[N], a[N], tot = 0; int read() {
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9') f = (c == '-') ? -1 : 1, c = getchar();
while (c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
} void insert(int x) {
int p = 0;
for (int i = 31; i >= 0; i--) {
int ch = (x >> i) & 1;
if (!trie[p][ch])
trie[p][ch] = ++tot;
p = trie[p][ch];
}
return;
}//简单的模板式的插入。 int search(int x) {
int p = 0, ans = 0;
for (int i = 31; i >= 0; i--) {
int ch = (x >> i) & 1;
if (trie[p][ch ^ 1]) {
ans |= (1 << i);
p = trie[p][ch ^ 1];
} else
p = trie[p][ch];
}
return ans;
}
//简单的模板式的查询。
int main() {
n = read();
int s = 0;
insert(s);
for (int i = 1; i <= n; i++) {
a[i] = read();
s ^= a[i];//当前的异或前缀和。
insert(s);
l[i] = max(l[i - 1], search(s));//一定要取 max。
}
memset(trie, 0, sizeof(trie));
tot = 0;//记得清零。
insert(s);
for (int i = n; i >= 1; i--) {
s ^= a[i];
insert(s);
r[i] = max(r[i + 1], search(s));//同上。
}
int ans = 0;
for (int i = 1; i < n; i++) ans = max(ans, l[i] + r[i + 1]);
printf("%d\n", ans);
return 0;
}

#10051 Nikitosh 和异或的更多相关文章

  1. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  2. Nikitosh 和异或(trie树)

    题目: #10051. 「一本通 2.3 例 3」Nikitosh 和异或 解析: 首先我们知道一个性质\(x\oplus x=0\) 我们要求\[\bigoplus_{i = l}^ra_i\]的话 ...

  3. 【Trie】Nikitosh 和异或

    [参考博客]: LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie [题目链接]: https://loj.ac/problem/10051 [题意]: 找出两个不相交区 ...

  4. Nikitosh 和异或 —— 一道 trie 树的题用可持久化 trie 水 然后翻车了...

    题意简介 题目就是叫你找两个不重合的非空区间,使得这两个区间里的数异或后相加的和最大 (看到异或,没错就决定是你了可持久化trie!) 思路 水一波字典树,莫名觉得这题可持久化能过,于是水了一发挂了, ...

  5. BZOJ4260,LOJ10051 Nikitosh 和异或

    题意 给定一个含 \(N\) 个元素的数组 \(A\),下标从 \(1\) 开始.请找出下面式子的最大值:\((A[l_1]\bigoplus A[l_1+1]\bigoplus -\bigoplus ...

  6. Nikitosh 和异或

    题面 设 \(l_{i}\) 为以 \(i\) 为结尾的区间中最大的一段异或值,\(r_{i}\) 为以 \(i\) 为开头的区间中最大的一段异或值. 则有 \[l_{i}=\max\left(l[i ...

  7. loj题目总览

    --DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...

  8. [一本通学习笔记] 字典树与 0-1 Trie

    字典树中根到每个结点对应原串集合的一个前缀,这个前缀由路径上所有转移边对应的字母构成.我们可以对每个结点维护一些需要的信息,这样即可以去做很多事情. #10049. 「一本通 2.3 例 1」Phon ...

  9. Trie学习总结

    Trie树学习总结 字典树,又称前缀树,是用于快速处理字符串的问题,能做到快速查找到一些字符串上的信息. 另外,Trie树在实现高效的同时,会损耗更多的空间,所以Trie是一种以空间换时间的算法. T ...

随机推荐

  1. python3 连接数据库~

    ~目前记录的是针对python3写的数据库连接,不适用于pyhon2.python3如果想要与数据库进行连接,则需要先下载对应各数据库的插件包,然后导入包.python3的插件下载地址:https:/ ...

  2. HTML+CSS系列:登录界面实现

    一.效果 二.具体实现 1.index.html <!DOCTYPE html> <html> <head> <meta charset="utf- ...

  3. C++中数组作为形参的方法

    转载:https://blog.csdn.net/qq_33374294/article/details/90769668 原链接:https://www.cnblogs.com/abella/p/1 ...

  4. windows.h系统函数

    转载:https://blog.csdn.net/u010756046/article/details/82432312 // Windows系统函数.cpp: 定义控制台应用程序的入口点.// #i ...

  5. JavaFX ImageView

    例子1:显示4个狗头.正常显示左上角.右下角的狗头:右上角的狗头旋转180°,并设置了透明度:左下角的狗头旋转90°,也设置了透明度. 1 import javafx.application.Appl ...

  6. 怎么写一个Activity

    a.新建一个类继承Actitvity b.重写oncreate方法 setContentView(R.layout.XXX);//设置布局文件 c.注册activity <activity an ...

  7. vue+elmentUI项目的正则判断

    一.为了方便重复利用管理,我创建一个regExp.ts文件来管理正则的表达式,内容如下: 1 /* eslint-disable */ 2 const phoneNumberRegExp = /^[1 ...

  8. Web前后端:如何分离,如何解耦?

    摘要:在本文中我们一起来探讨一下为什么要在软件开发中进行前后端的分离,如何做到前后端分离,如何解耦. 简单地说,就是要把复杂的问题简单化,把一个从0到N的问题转化为N个0到1的问题.另一个相近的说法就 ...

  9. 用C写一个简单的推箱子游戏(二)

    下面接着上一篇随笔<用C写一个简单的推箱子游戏(一)>来写 tuidong()函数是用来判断游戏人物前方情况的函数,是推箱子游戏中非常重要的一个函数,下面从它开始继续介绍推箱子的小程序怎么 ...

  10. reids等非关系数据库管理工具treesoft

    先下载treesoft 链接:https://pan.baidu.com/s/1o8UPK7lF0-WvE9afoR0sWw 提取码:3uc3 下载好之后进行解压文件 解压完成后目录结构 将webap ...