题意

给定一个 \(n\) 个点 \(m\) 条边的图,求最小生成树的个数。

\(\texttt{Data Range:}1\leq n\leq 100,1\leq m\leq 10^4\)

题解

一道好题。

根据本题后面提供的与那题正解没什么关联的方法可知,这个操作过程是这样的:

首先求出原图的某一个最小生成树,接下来考虑从小到大枚举最小生成树上边的边权 \(w\)。

将最小生成树上边权不为 \(w\) 的边保留下来进行缩点,接下来再连上不在最小生成树中边权为 \(w\) 的边。

这个时候会建出一个无向图,对每一个可能的 \(w\) 建出的图求一下生成树的个数乘起来即可。

证明的话可以利用 Kruskal 的性质,求生成树的时候使用 Matrix-Tree 定理即可。

模合数求行列式的方法是辗转相消,每一次需要交换两行,行列式要乘上 \(-1\),实在不理解可以看我代码

容易看出这个东西的复杂度是 \(O(n^3\log n)\) 的。

代码

#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=251,MOD=31011;
struct EdgeForKruskal{
ll from,to,dist;
inline bool operator <(const EdgeForKruskal &rhs)const
{
return this->dist<rhs.dist;
}
};
EdgeForKruskal ed[2051],tree[MAXN];
ll n,m,x,y,z,kk,res=1,totw;
ll ffa[MAXN],bel[MAXN],mat[MAXN][MAXN],wt[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
inline void add(ll x,ll y)
{
mat[x][y]--,mat[y][x]--,mat[x][x]++,mat[y][y]++;
}
inline ll find(ll x)
{
return x==ffa[x]?x:ffa[x]=find(ffa[x]);
}
inline void setup(ll n)
{
for(register int i=1;i<=n;i++)
{
ffa[i]=i;
}
}
inline void merge(ll x,ll y)
{
ll fx=find(x),fy=find(y);
fx!=fy?ffa[fy]=fx:1;
}
inline ll Kruskal()
{
ll tott=0;
for(register int i=1;i<=m;i++)
{
if(find(ed[i].from)!=find(ed[i].to))
{
merge(ed[i].from,ed[i].to),tree[++tott]=ed[i];
if(wt[totw]!=ed[i].dist)
{
wt[++totw]=ed[i].dist;
}
if(tott==n-1)
{
break;
}
}
}
return tott==n-1;
}
inline void mergePoint(ll wt)
{
for(register int i=1;i<n;i++)
{
tree[i].dist!=wt?merge(tree[i].from,tree[i].to):(void)1;
}
}
inline ll det(ll n)
{
ll res=1,sgn=1,cof;
for(register int i=1;i<=n;i++)
{
for(register int j=1;j<=n;j++)
{
mat[i][j]=(mat[i][j]+MOD)%MOD;
}
}
for(register int i=1;i<=n;i++)
{
for(register int j=i+1;j<=n;j++)
{
while(mat[j][i])
{
cof=mat[i][i]/mat[j][i];
for(register int k=i;k<=n;k++)
{
mat[i][k]=(mat[i][k]-(li)cof*mat[j][k]%MOD+MOD)%MOD;
}
swap(mat[i],mat[j]),sgn*=-1;
}
}
}
for(register int i=1;i<=n;i++)
{
res=(li)res*mat[i][i]%MOD;
}
return sgn==1?res:MOD-res;
}
inline ll calc(ll wt)
{
ll blk=0;
memset(mat,0,sizeof(mat)),setup(n),mergePoint(wt);
for(register int i=1;i<=n;i++)
{
find(i)==i?bel[i]=++blk:1;
}
for(register int i=1;i<=n;i++)
{
bel[i]=bel[find(i)];
}
for(register int i=1;i<=m;i++)
{
ed[i].dist==wt?add(bel[ed[i].from],bel[ed[i].to]):(void)1;
}
return det(blk-1);
}
int main()
{
n=read(),m=read();
for(register int i=1;i<=m;i++)
{
x=read(),y=read(),z=read(),ed[i]=(EdgeForKruskal){x,y,z};
}
sort(ed+1,ed+m),setup(n);
if(!Kruskal())
{
return puts("0"),0;
}
for(register int i=1;i<=totw;i++)
{
res=res*calc(wt[i])%MOD;
}
printf("%d\n",res);
}

Luogu P4208 [JSOI2008]最小生成树计数的更多相关文章

  1. P4208 [JSOI2008]最小生成树计数

    现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)输出方案数对31011 ...

  2. [洛谷P4208][JSOI2008]最小生成树计数

    题目大意:有$n$个点和$m$条边(最多有$10$条边边权相同),求最小生成树个数 题解:对于所有最小生成树,每种边权的边数是一样的.于是就可以求出每种边权在最小生成树中的个数,枚举这种边的边集,求出 ...

  3. 洛谷P4208 [JSOI2008]最小生成树计数——题解

    题目传送 前置知识:对于同一个图的所有最小生成树,权值相等的边的数量相同. 可以简单证明一下: 我们可以从kruskal的过程考虑.这个算法把所有边按权值大小从小到大排序,然后按顺序看每条边,只要加上 ...

  4. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  5. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  6. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  7. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  8. 【bzoj1016】[JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4863  Solved: 1973[Submit][St ...

  9. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

随机推荐

  1. GitBook 3.2.3入门

    简介 GitBook 是一个基于 Node.js 的命令行工具,可使用 GitHub / Git.Markdown.AsciiDoc来制作精美的电子书.GitBook 可以将文档作为静态网站或电子书( ...

  2. c语言的变量,常量及作用域等

    1.const定义常量 在C语言中,const可以用来定义的一个常量,在变量名前加上const即可. int const a: 定义了一个a的整数常量,且a的值不能被修改.如果要修改a的值,有以下两种 ...

  3. GAN在seq2seq中的应用 Application to Sequence Generation

    Improving Supervised Seq-to-seq Model 有监督的 seq2seq ,比如机器翻译.聊天机器人.语音辨识之类的 . 而 generator 其实就是典型的 seq2s ...

  4. 【Python】类

    初探类 类定义与函数定义( def语句 )一样必须被执行才会起作用 调用 x.f() 其实就相当于 MyClass.f(x) 补充说明 数据属性会覆盖掉具有相同名称的方法属性 命名方法 方法名称使用大 ...

  5. JavaScript利用函数反转数组

    要求: 给定一数组,将其元素倒序排列并输出. 代码实现: // 利用函数翻转任意数组 reverse 翻转 function reverse(arr) { var newArr = []; for ( ...

  6. Tensorflow学习笔记No.5

    tf.data卷积神经网络综合应用实例 使用tf.data建立自己的数据集,并使用CNN卷积神经网络实现对卫星图像的二分类问题. 数据下载链接:https://pan.baidu.com/s/141z ...

  7. Java NIO:通道

    最近打算把Java网络编程相关的知识深入一下(IO.NIO.Socket编程.Netty) Java NIO主要需要理解缓冲区.通道.选择器三个核心概念,作为对Java I/O的补充, 以提升大批量数 ...

  8. TP5 调用快递鸟api 查询快递信息

    1,去快递鸟,下载sdk https://www.kdniao.com/api-track 下载PHPsdk 2,下载下来的事PHP文件,不是以类的形式显示的,所以为了方便,我把他封装成了类,不需要封 ...

  9. BUUCTF_web_三

    下面还是简单web的入门题 [GKCTF2020]cve版签到 这次的比赛最简单的题了吧,提示是CVE-2020-7066,但是网上没有几个关于这个漏洞的相关利用的文章,似乎是get_header() ...

  10. TMS, XYZ & WMTS的不同

    WMS是OGC定义的协议,用于请求任意区域的渲染地图图像.客户可以根据需要以平铺模式对其进行请求. WMS-C是OSGeo创建的WMS扩展,它向功能文档中添加了元数据,以使客户端知道在哪里发出请求,从 ...