题意:一个表达式,n + 1个数,n个操作,每个操作Oi和数Ai+1对应,给出每个操作Oi和数Ai+1消失的概率,给出最后表达式值得期望。只有| , ^,&三个位操作

思路:显然位操作只对当前位相关,那么我们可以一位一位求解,算出每一位的概率,然后算出这一位所给出的贡献的期望。

代码:

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 200 + 10;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1e4 + 7;
double dp[maxn][2], poss[maxn];
int a[maxn];
char op[maxn][2];
int main(){
int n, ca = 1;
while(~scanf("%d", &n)){
for(int i = 0; i <= n; i++){
scanf("%d", &a[i]);
}
for(int i = 1; i <= n; i++){
scanf("%s", op[i]);
}
for(int i = 1; i <= n; i++){
scanf("%lf", &poss[i]);
}
for(int i = 0; i < 20; i++){
if(a[0] & (1 << i)){
dp[i][1] = 1;
dp[i][0] = 0;
}
else{
dp[i][1] = 0;
dp[i][0] = 1;
}
}
double ans = 0;
for(int k = 0; k < 20; k++){
for(int i = 1; i <= n; i++){
int bit = (1 << k) & a[i];
double pre0 = dp[k][0], pre1 = dp[k][1];
if(op[i][0] == '&'){
if(bit){
dp[k][1] = pre1;
dp[k][0] = pre0;
}
else{
dp[k][1] = pre1 * poss[i];
dp[k][0] = pre0 * (1 - poss[i]) + pre0 * poss[i] + pre1 * (1 - poss[i]);
}
}
else if(op[i][0] == '|'){
if(bit){
dp[k][1] = pre0 * (1 - poss[i]) + pre1;
dp[k][0] = pre0 * poss[i];
}
else{
dp[k][1] = pre1;
dp[k][0] = pre0;
}
}
else{ // ^
if(bit){
dp[k][1] = pre1 * poss[i] + pre0 * (1 - poss[i]);
dp[k][0] = pre0 * poss[i] + pre1 * (1 - poss[i]);
}
else{
dp[k][1] = pre1;
dp[k][0] = pre0;
}
}
}
// printf("* %f %f\n", dp[k][0], dp[k][1]);
ans += dp[k][1] * double(1 << k);
}
printf("Case %d:\n%.6f\n", ca++, ans);
}
return 0;
}

HDU 4649 Professor Tian(概率DP)题解的更多相关文章

  1. HDU 4649 Professor Tian (概率DP)

    Professor Tian Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)To ...

  2. HDU 4649 Professor Tian

    Professor Tian Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) T ...

  3. hdu 4649 Professor Tian 多校联合训练的题

    这题起初没读懂题意,悲剧啊,然后看了题解写完就AC了 题意是给一个N,然后给N+1个整数 接着给N个操作符(只有三种操作  即  或 ,与 ,和异或 |   &  ^ )这样依次把操作符插入整 ...

  4. hdu 4649 Professor Tian 反状态压缩+概率DP

    思路:反状态压缩——把数据转换成20位的01来进行运算 因为只有20位,而且&,|,^都不会进位,那么一位一位地看,每一位不是0就是1,这样求出每一位是1的概率,再乘以该位的十进制数,累加,就 ...

  5. HDU 4649 Professor Tian(反状态压缩dp,概率)

    本文出自   http://blog.csdn.net/shuangde800 题目链接:点击打开链接 题目大意 初始有一个数字A0, 然后给出A1,A2..An共n个数字,这n个数字每个数字分别有一 ...

  6. HDU 4649 Professor Tian(DP)

    题目链接 暴力水过的,比赛的时候T了两次,优化一下初始化,终于水过了. #include <cstdio> #include <cstring> #include <st ...

  7. HDU 4649 - Professor Tian(2013MUTC5-1007)(概率)

    不知道这题算作什么类型的题目,反正很巧妙,队友小杰想了没一会就搞定了 为了学习这种方法,我也搞了搞,其实思路不难想,位运算嘛,只有0和1,而且该位的运算只影响该位,最多20位,一位一位地计算即可,只需 ...

  8. HDU-4694 Professor Tian 概率DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4649 题意:给一个位运算的表达式,每个运算符和其后的运算数有一定概率不计算,求最后表达式的期望. 因为 ...

  9. HDU 4089 Activation:概率dp + 迭代【手动消元】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4089 题意: 有n个人在排队激活游戏,Tomato排在第m个. 每次队列中的第一个人去激活游戏,有可能 ...

随机推荐

  1. APM调用链产品对比

    APM调用链产品对比 随着企业经营规模的扩大,以及对内快速诊断效率和对外SLA(服务品质协议,service-level agreement)的追求,对于业务系统的掌控度的要求越来越高,主要体现在: ...

  2. 拒演"拼命工作"的苦情戏,如何更聪明地提高工作效率?

    前几天PDD的事情又把互联网打工人的工作状态推向了大众视野,引起了大家的口诛笔伐.但是目前来看这种愤慨终究是暂时的,作用甚微.在大环境短时间无法改变的前提下,想想如何应对,或许比在网上愤愤不平破口大骂 ...

  3. 两种方式,花五分钟就能构建一个 Spring Boot 应用

    前言 Spring Boot 的好处自然不必多说,对于想要从事 Java 工作的朋友们来说,可谓是必学的技能. 在我看来,它的优势就是多快好省. 功能多,很多常用的能力都有集成: 接入快,简单的几行代 ...

  4. MySQL调优性能监控之show profile

    用show profile查询工具指定具体的type show profile在mysql5.7之后过时 show profile命令用于跟踪执行过的sql语句的资源消耗信息,可以帮助查看sql语句的 ...

  5. ETL调优的一些分享(下)(转载)

    如在上篇文章<ETL调优的一些分享(上)>中已介绍的,ETL是构建数据仓库的必经一环,它的执行性能对于数据仓库构建性能有重要意义,因此对它进行有效的调优将十分重要.ETL业务的调优可以从若 ...

  6. 【C++小知识】#define、enum、const的含义与用法

    一.#define 含义 define是宏定义,编译器不对其进行错误检查,在预编译阶段处理,没有作用域限制属于全局常量,在程序中编译器会对定义的常量名以数值进行替换,且每次替换都分配内存,此方法对于大 ...

  7. QT之——QTableWidget拖拽单元格并替换内容(进阶)

    所需待重写函数: [virtual] bool QObject::eventFilter(QObject *watched, QEvent *event); /* * Filters events i ...

  8. lodash的debounce函数的使用

    最新,在react新项目的开发中使用到了lodash类库的debounce方法,就随手梳理了一下此方法的方便之处 未使用debounce之前 如果不考虑使用debounce,那么在用户连续点击的情况之 ...

  9. Thank in Java

    Think in Java 2.一切都是对象 2.1 引用操作对象 Java 中一切都是对象,因此可以采用单一固定得语法. 操作对象得标识符实际上是对对象得一个 "引用"refer ...

  10. TypeScript中 typeof ArrayInstance[number] 剖析

    假设这样一个场景,目前业务上仅对接了三方支付 'Alipay', 'Wxpay', 'PayPal', 实际业务 getPaymentMode 会根据不同支付方式进行不同的付款/结算流程. const ...