Netty源码解析 -- 对象池Recycler实现原理
由于在Java中创建一个实例的消耗不小,很多框架为了提高性能都使用对象池,Netty也不例外。
本文主要分析Netty对象池Recycler的实现原理。
源码分析基于Netty 4.1.52
缓存对象管理
Recycler的内部类Stack负责管理缓存对象。
Stack关键字段
// Stack所属主线程,注意这里使用了WeakReference
WeakReference<Thread> threadRef;
// 主线程回收的对象
DefaultHandle<?>[] elements;
// elements最大长度
int maxCapacity;
// elements索引
int size;
// 非主线程回收的对象
volatile WeakOrderQueue head;
Recycler将一个Stack划分给某个主线程,主线程直接从Stack#elements中存取对象,而非主线程回收对象则存入WeakOrderQueue中。
threadRef字段使用了WeakReference,当主线程消亡后,该字段指向对象就可以被垃圾回收。
DefaultHandle,对象的包装类,在Recycler中缓存的对象都会包装成DefaultHandle类。
head指向的WeakOrderQueue,用于存放其他线程的对象
WeakOrderQueue主要属性
// Head#link指向Link链表首对象
Head head;
// 指向Link链表尾对象
Link tail;
// 指向WeakOrderQueue链表下一对象
WeakOrderQueue next;
// 所属线程
WeakReference<Thread> owner;
Link中也有一个DefaultHandle<?>[] elements
字段,负责存储数据。
注意,Link继承了AtomicInteger,AtomicInteger的值存储elements的最新索引。
WeakOrderQueue也是属于某个线程,并且WeakOrderQueue继承了WeakReference<Thread>
,当所属线程消亡时,对应WeakOrderQueue也可以被垃圾回收。
注意:每个WeakOrderQueue都只属于一个Stack,并且只属于一个非主线程。
thread2要存放对象到Stack1中,只能存放在WeakOrderQueue1
thread1要存放对象到Stack2中,只能存放在WeakOrderQueue3
回收对象
DefaultHandle#recycle -> Stack#push
void push(DefaultHandle<?> item) {
Thread currentThread = Thread.currentThread();
if (threadRef.get() == currentThread) {
// #1
pushNow(item);
} else {
// #2
pushLater(item, currentThread);
}
}
#1
当前线程是主线程,直接将对象加入到Stack#elements中。
#2
当前线程非主线程,需要将对象放到对应的WeakOrderQueue中
private void pushLater(DefaultHandle<?> item, Thread thread) {
...
// #1
Map<Stack<?>, WeakOrderQueue> delayedRecycled = DELAYED_RECYCLED.get();
WeakOrderQueue queue = delayedRecycled.get(this);
if (queue == null) {
// #2
if (delayedRecycled.size() >= maxDelayedQueues) {
delayedRecycled.put(this, WeakOrderQueue.DUMMY);
return;
}
// #3
if ((queue = newWeakOrderQueue(thread)) == null) {
return;
}
delayedRecycled.put(this, queue);
} else if (queue == WeakOrderQueue.DUMMY) {
// #4
return;
}
// #5
queue.add(item);
}
#1
DELAYED_RECYCLED是一个FastThreadLocal,可以理解为Netty中的ThreadLocal优化类。它为每个线程维护了一个Map,存储每个Stack和对应WeakOrderQueue。
所有这里获取的delayedRecycled变量是仅用于当前线程的。
而delayedRecycled.get获取的WeakOrderQueue,是以Thread + Stack作为维度区分的,只能是一个线程操作。
#2
当前WeakOrderQueue数量超出限制,添加WeakOrderQueue.DUMMY作为标记
#3
构造一个WeakOrderQueue,加入到Stack#head指向的WeakOrderQueue链表中,并放入DELAYED_RECYCLED。这时是需要一下同步操作的。
#4
遇到WeakOrderQueue.DUMMY标记对象,直接抛弃对象
#5
将缓存对象添加到WeakOrderQueue中。
WeakOrderQueue#add
void add(DefaultHandle<?> handle) {
handle.lastRecycledId = id;
// #1
if (handleRecycleCount < interval) {
handleRecycleCount++;
return;
}
handleRecycleCount = 0;
Link tail = this.tail;
int writeIndex;
// #2
if ((writeIndex = tail.get()) == LINK_CAPACITY) {
Link link = head.newLink();
if (link == null) {
return;
}
this.tail = tail = tail.next = link;
writeIndex = tail.get();
}
// #3
tail.elements[writeIndex] = handle;
handle.stack = null;
// #4
tail.lazySet(writeIndex + 1);
}
#1
控制回收频率,避免WeakOrderQueue增长过快。
每8个对象都会抛弃7个,回收一个
#2
当前Link#elements已全部使用,创建一个新的Link
#3
存入缓存对象
#4
延迟设置Link#elements的最新索引(Link继承了AtomicInteger),这样在该stack主线程通过该索引获取elements缓存对象时,保证elements中元素已经可见。
获取对象
Recycler#threadLocal中存放了每个线程对应的Stack。
Recycler#get中首先获取属于当前线程的Stack,再从该Stack中获取对象,也就是,每个线程只能从自己的Stack中获取对象。
Recycler#get -> Stack#pop
DefaultHandle<T> pop() {
int size = this.size;
if (size == 0) {
// #1
if (!scavenge()) {
return null;
}
size = this.size;
if (size <= 0) {
return null;
}
}
// #2
size --;
DefaultHandle ret = elements[size];
elements[size] = null;
this.size = size;
...
return ret;
}
#1
elements没有可用对象时,将WeakOrderQueue中的对象迁移到elements
#2
从elements中取出一个缓存对象
scavenge -> scavengeSome -> WeakOrderQueue#transfer
boolean transfer(Stack<?> dst) {
Link head = this.head.link;
if (head == null) {
return false;
}
// #1
if (head.readIndex == LINK_CAPACITY) {
if (head.next == null) {
return false;
}
head = head.next;
this.head.relink(head);
}
// #2
final int srcStart = head.readIndex;
int srcEnd = head.get();
final int srcSize = srcEnd - srcStart;
if (srcSize == 0) {
return false;
}
// #3
final int dstSize = dst.size;
final int expectedCapacity = dstSize + srcSize;
if (expectedCapacity > dst.elements.length) {
final int actualCapacity = dst.increaseCapacity(expectedCapacity);
srcEnd = min(srcStart + actualCapacity - dstSize, srcEnd);
}
if (srcStart != srcEnd) {
final DefaultHandle[] srcElems = head.elements;
final DefaultHandle[] dstElems = dst.elements;
int newDstSize = dstSize;
// #4
for (int i = srcStart; i < srcEnd; i++) {
DefaultHandle<?> element = srcElems[i];
...
srcElems[i] = null;
// #5
if (dst.dropHandle(element)) {
continue;
}
element.stack = dst;
dstElems[newDstSize ++] = element;
}
// #6
if (srcEnd == LINK_CAPACITY && head.next != null) {
this.head.relink(head.next);
}
head.readIndex = srcEnd;
// #7
if (dst.size == newDstSize) {
return false;
}
dst.size = newDstSize;
return true;
} else {
// The destination stack is full already.
return false;
}
}
就是把WeakOrderQueue中的对象迁移到Stack中。
#1
head.readIndex 标志现在已迁移对象下标
head.readIndex == LINK_CAPACITY
,表示当前Link已全部移动,查找下一个Link
#2
计算待迁移对象数量
注意,Link继承了AtomicInteger
#3
计算Stack#elements数组长度,不够则扩容
#4
遍历待迁移的对象
#5
控制回收频率
#6
当前Link对象已全部移动,修改WeakOrderQueue#head的link属性,指向下一Link,这样前面的Link就可以被垃圾回收了。
#7
dst.size == newDstSize
表示并没有对象移动,返回false
否则更新dst.size
其实对象池的实现难点在于线程安全。
Recycler中将主线程和非主线程回收对象划分到不同的存储空间中(stack#elements和WeakOrderQueue.Link#elements),并且对于WeakOrderQueue.Link#elements,存取操作划分到两端进行(非主线程从尾端存入,主线程从首部开始读取),
从而减少同步操作,并保证线程安全。
另外,Netty还提供了更高级别的对象池类ObjectPool,使用方法可以参考PooledDirectByteBuf#RECYCLER,这里不再赘述。
如果您觉得本文不错,欢迎关注我的微信公众号,系列文章持续更新中。您的关注是我坚持的动力!
Netty源码解析 -- 对象池Recycler实现原理的更多相关文章
- Netty源码解析 -- 内存池与PoolArena
我们知道,Netty使用直接内存实现Netty零拷贝以提升性能, 但直接内存的创建和释放可能需要涉及系统调用,是比较昂贵的操作,如果每个请求都创建和释放一个直接内存,那性能肯定是不能满足要求的. 这时 ...
- Netty源码解析 -- 事件循环机制实现原理
本文主要分享Netty中事件循环机制的实现. 源码分析基于Netty 4.1 EventLoop 前面分享服务端和客户端启动过程的文章中说过,Netty通过事件循环机制(EventLoop)处理IO事 ...
- Netty 源码解析(五): Netty 的线程池分析
今天是猿灯塔“365篇原创计划”第五篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel Netty ...
- Netty 源码解析(四): Netty 的 ChannelPipeline
今天是猿灯塔“365篇原创计划”第四篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel Netty ...
- Netty源码解析—客户端启动
Netty源码解析-客户端启动 Bootstrap示例 public final class EchoClient { static final boolean SSL = System.getPro ...
- Netty源码解析---服务端启动
Netty源码解析---服务端启动 一个简单的服务端代码: public class SimpleServer { public static void main(String[] args) { N ...
- Netty 源码解析(三): Netty 的 Future 和 Promise
今天是猿灯塔“365篇原创计划”第三篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel 当前:Ne ...
- Netty 源码解析(九): connect 过程和 bind 过程分析
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第九篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源 ...
- Netty 源码解析(八): 回到 Channel 的 register 操作
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第八篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源 ...
随机推荐
- DVWA SQL Injection Medium
Mdeium 基本的步骤及知识点在上节已经提到过这里不再赘述:https://blog.csdn.net/WQ_BCJ/article/details/84554777 1)与low级别不同,本次采用 ...
- Project Lombok——带给你简洁、清晰的代码
相信但凡有一点Java编程经历的人,都见过或者写过下面这种代码.这是一个简单的POJO,只有4个fields,加上构造器.equals.hash.toString以及各种getter setter,前 ...
- Jenkins Job间传递参数的一种方法
场景: Jenkins 中可以建多个Job,一般是主编译Job,多个子Job. 子Job要用主Job中的版本号,编译号. 1) 在主Job里面添加脚本命令: echo set MainVersion ...
- Go语言的context包从放弃到入门
目录 一.Context包到底是干嘛用的 二.主协程退出通知子协程示例演示 主协程通知子协程退出 主协程通知有子协程,子协程又有多个子协程 三.Context包的核心接口和方法 context接口 e ...
- 基于gin的golang web开发:服务间调用
微服务开发中服务间调用的主流方式有两种HTTP.RPC,HTTP相对来说比较简单.本文将使用 Resty 包来实现基于HTTP的微服务调用. Resty简介 Resty 是一个简单的HTTP和REST ...
- 深入分析 Java 乐观锁
前言 激烈的锁竞争,会造成线程阻塞挂起,导致系统的上下文切换,增加系统的性能开销.那有没有不阻塞线程,且保证线程安全的机制呢?--乐观锁. 乐观锁是什么? 操作共享资源时,总是很乐观,认为自己可以成功 ...
- 【题解】「UVA11626」Convex Hull
凸包模板题. 之前写过拿 Graham 算法求凸包的,为了不重复/多学点知识,那这次拿 Andrew 算法求凸包吧qaq *此文章所有图片均为作者手画. Andrew 算法 假设我们有这些点: 首先把 ...
- 图书管理系统(Java实现,十个数据表,含源码、ER图,超详细报告解释,2020.7.11更新)
图书管理系统数据库设计实验报告 文章目录 更新日志 1.概述 2.需求分析 2.1需要实现的功能 2.2业务流程图 2.2.1学生流程图 2.2.2管理员流程图 2.2.3超级管理员流程图 2.3功能 ...
- Consul安装部署(Windows单机、Docker集群)
1. Consul简介 Consul 是一个支持多数据中心分布式高可用的服务发现和配置共享的服务软件,由 HashiCorp 公司用 Go 语言开发,基于 Mozilla Public Licen ...
- springmvc中ModelAttribute注解应用在参数中
可以用@ModelAttribute来注解方法参数或方法.带@ModelAttribute创建的参数对象会被添加到Model对象中.注解在参数上时,可以从Form表单或URL参数中获取参数并绑定到mo ...