RDD和Dataframe相互转换
参考:https://www.cnblogs.com/starwater/p/6841807.html
在spark中,RDD、DataFrame、Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势
共性:
1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利
2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,极端情况下,如果代码里面有创建、转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如
1
2
3
4
5
6
7
8
|
val sparkconf = new SparkConf().setMaster( "local" ).setAppName( "test" ).set( "spark.port.maxRetries" , "1000" ) val spark = SparkSession.builder().config(sparkconf).getOrCreate() val rdd = spark.sparkContext.parallelize(Seq(( "a" , 1 ), ( "b" , 1 ), ( "a" , 1 ))) rdd.map{line = > println( "运行" ) line. _ 1 } |
map中的println("运行")并不会运行
3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
4、三者都有partition的概念,如
1
2
3
4
5
6
7
8
|
var predata = data.repartition( 24 ).mapPartitions{ PartLine = > { PartLine.map{ line = > println(“转换操作”) } } } |
这样对每一个分区进行操作时,就跟在操作数组一样,不但数据量比较小,而且可以方便的将map中的运算结果拿出来,如果直接用map,map中对外面的操作是无效的,如
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
val rdd = spark.sparkContext.parallelize(Seq(( "a" , 1 ), ( "b" , 1 ), ( "a" , 1 ))) var flag = 0 val test = rdd.map{line = > println( "运行" ) flag+ = 1 println(flag) line. _ 1 } println(test.count) println(flag) /** 运行 1 运行 2 运行 3 3 0 * */ |
不使用partition时,对map之外的操作无法对map之外的变量造成影响
5、三者有许多共同的函数,如filter,排序等
6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持
1
2
|
import spark.implicits. _ //这里的spark是SparkSession的变量名 |
7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型
DataFrame:
1
2
3
4
5
6
7
|
testDF.map{ case Row(col 1 : String,col 2 : Int) = > println(col 1 );println(col 2 ) col 1 case _= > "" } |
为了提高稳健性,最好后面有一个_通配操作,这里提供了DataFrame一个解析字段的方法
Dataset:
1
2
3
4
5
6
7
8
|
case class Coltest(col 1 : String,col 2 : Int) extends Serializable //定义字段名和类型 testDS.map{ case Coltest(col 1 : String,col 2 : Int) = > println(col 1 );println(col 2 ) col 1 case _= > "" } |
区别:
RDD:
1、RDD一般和spark mlib同时使用
2、RDD不支持sparksql操作
DataFrame:
1、与RDD和Dataset不同,DataFrame每一行的类型固定为Row,只有通过解析才能获取各个字段的值,如
1
2
3
4
5
|
testDF.foreach{ line = > val col 1 = line.getAs[String]( "col1" ) val col 2 = line.getAs[String]( "col2" ) } |
每一列的值没法直接访问
2、DataFrame与Dataset一般与spark ml同时使用
3、DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如
1
2
|
dataDF.createOrReplaceTempView( "tmp" ) spark.sql( "select ROW,DATE from tmp where DATE is not null order by DATE" ).show( 100 , false ) |
4、DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然
1
2
3
4
5
6
|
//保存 val saveoptions = Map( "header" -> "true" , "delimiter" -> "\t" , "path" -> "hdfs://172.xx.xx.xx:9000/test" ) datawDF.write.format( "com.databricks.spark.csv" ).mode(SaveMode.Overwrite).options(saveoptions).save() //读取 val options = Map( "header" -> "true" , "delimiter" -> "\t" , "path" -> "hdfs://172.xx.xx.xx:9000/test" ) val datarDF = spark.read.options(options).format( "com.databricks.spark.csv" ).load() |
利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定
Dataset:
这里主要对比Dataset和DataFrame,因为Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同
DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段
而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
case class Coltest(col 1 : String,col 2 : Int) extends Serializable //定义字段名和类型 /** rdd ("a", 1) ("b", 1) ("a", 1) * */ val test : Dataset[Coltest] = rdd.map{line = > Coltest(line. _ 1 ,line. _ 2 ) }.toDS test.map{ line = > println(line.col 1 ) println(line.col 2 ) } |
可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题
转化:
RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换
DataFrame/Dataset转RDD:
这个转换很简单
1
2
|
val rdd 1 = testDF.rdd val rdd 2 = testDS.rdd |
RDD转DataFrame:
1
2
3
4
|
import spark.implicits. _ val testDF = rdd.map {line = > (line. _ 1 ,line. _ 2 ) }.toDF( "col1" , "col2" ) |
一般用元组把一行的数据写在一起,然后在toDF中指定字段名
RDD转Dataset:
1
2
3
4
5
|
import spark.implicits. _ case class Coltest(col 1 : String,col 2 : Int) extends Serializable //定义字段名和类型 val testDS = rdd.map {line = > Coltest(line. _ 1 ,line. _ 2 ) }.toDS |
可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可
Dataset转DataFrame:
这个也很简单,因为只是把case class封装成Row
1
2
|
import spark.implicits. _ val testDF = testDS.toDF |
DataFrame转Dataset:
1
2
3
|
import spark.implicits. _ case class Coltest(col 1 : String,col 2 : Int) extends Serializable //定义字段名和类型 val testDS = testDF.as[Coltest] |
这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便
特别注意:
在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用
RDD和Dataframe相互转换的更多相关文章
- RDD/Dataset/DataFrame互转
1.RDD -> Dataset val ds = rdd.toDS() 2.RDD -> DataFrame val df = spark.read.json(rdd) 3.Datase ...
- RDD、DataFrame和DataSet的区别
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD ...
- RDD与DataFrame的转换
RDD与DataFrame转换1. 通过反射的方式来推断RDD元素中的元数据.因为RDD本身一条数据本身是没有元数据的,例如Person,而Person有name,id等,而record是不知道这些的 ...
- spark-DataFrame之RDD和DataFrame之间的转换
package cn.spark.study.core.mycode_dataFrame; import java.io.Serializable;import java.util.List; imp ...
- 谈谈RDD、DataFrame、Dataset的区别和各自的优势
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spar ...
- spark RDD,DataFrame,DataSet 介绍
弹性分布式数据集(Resilient Distributed Dataset,RDD) RDD是Spark一开始就提供的主要API,从根本上来说,一个RDD就是你的数据的一个不可变的分布式元素集合,在 ...
- Spark提高篇——RDD/DataSet/DataFrame(二)
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 该篇主要介绍DataSet与DataFrame. 一.生成DataFrame ...
- [Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子
[Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子 from pyspark.sql.types import * schema = Struct ...
- [Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子
[Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":&quo ...
随机推荐
- 「疫期集训day7」周期
我们成功入侵了圣康坦,屋子里到处都是面包,食物,水...现在我们的目标就在眼前----亚眠------鲁道登夫攻势中损失惨重的德国精英兵 今天考试考出了历史最低,原因在于T1签到题挂了,ull真的毒瘤 ...
- Monkey and Banana 题解(动态规划)
Monkey and Banana 简单的动态规划 1.注: 本人第一篇博客,有啥不足还请多多包涵,有好的建议请指出.你以为有人读你博客,还给你提意见. 2.原题 Background: A grou ...
- 使用@AutoConfigureBefore调整配置顺序竟没生效?
一个人的价值体现在能够帮助多少人.自己编码好,价值能得到很好的体现.若你做出来的东西能够帮助别人开发,大大减少开发的时间,那就功德无量. 作者:A哥(YourBatman) 公众号:BAT的乌托邦(I ...
- 仅需5步,轻松升级K3s集群!
Rancher 2.4是Rancher目前最新的版本,在这一版本中你可以通过Rancher UI对K3s集群进行升级管理. K3s是一个轻量级Kubernetes发行版,借助它你可以几分钟之内设置你的 ...
- css3 文本行的斑马线
背景知识 CSS 渐变, background-size ,“条纹背景”,“灵活的背景定位 难题 几年前,在刚刚获得 :nth-child() / :nth-of-type() 伪类之后,我们最常用其 ...
- 【题解】p2388阶乘之乘
原题传送门 题解一堆\(O(n)\)算法真给我看傻了. 考虑\(10=2*5\),因子2肯定更多,所以计算因子5的个数即可. 从5到n这\(n-5+1\)个数的阶乘里面,都各自含有一个因子\(5=1* ...
- easy tornado
easy tornado 题目分析 这是一道2018年护网杯的题目 /flag.txt /welcome.txt /hints.txt 一共有3个文件. /flag.txt flag in /flll ...
- 数据可视化基础专题(十二):Matplotlib 基础(四)常用图表(二)气泡图、堆叠图、雷达图、饼图、
1 气泡图 气泡图和上面的散点图非常类似,只是点的大小不一样,而且是通过参数 s 来进行控制的,多的不说,还是看个示例: 例子一: import matplotlib.pyplot as plt im ...
- Mariadb之主从复制的读写分离
首先我们来回顾下代理的概念,所谓代理就是指的是一端面向客户端,另外一端面向服务端,代理客户端访问服务端,我们把这种代理叫正向代理:代理服务端响应客户端我们叫做反向代理,这个我们在之前nginx系列博客 ...
- 使用Typora写博客,图片即时上传,无需第三方图床-EasyBlogImageForTypora
背景 习惯使用markdown的人应该都知道Typora这个神器,它非常简洁高效.虽然博客园的在线markdown编辑器也不错,但毕竟是网页版,每次写东西需要登录系统-进后台-找到文章-编辑-保存草稿 ...