数位dp(贴一个模板=。=)
emmmm,之前看到大佬的博客感觉这个模板挺有用的,就贴了一个= =
然后解释什么的都有了就。。。。。。
数位dp一般应用于:
求出在给定区间[A,B]内,符合条件P(i)的数i的个数.
条件P(i)一般与数的大小无关,而与 数的组成 有关.
数位dp是一种计数用的dp,一般就是要统计一个区间[le,ri]内满足一些条件数的个数。所谓数位dp,字面意思就是在数位上进行dp咯。数位还算是比较好听的名字,数位的含义:一个数有个位、十位、百位、千位......数的每一位就是数位啦!
之所以要引入数位的概念完全就是为了dp。数位dp的实质就是换一种暴力枚举的方式,使得新的枚举方式满足dp的性质,然后记忆化就可以了。
普通的枚举方式不方便记忆化
新方式 控制上界枚举,从最高位开始往下枚举,例如:ri=213,那么我们从百位开始枚举:百位可能的情况有0,1,2(觉得这里枚举0有问题的继续看)
然后每一位枚举都不能让枚举的这个数超过上界213(下界就是0或者1,这个次要),当百位枚举了1,那么十位枚举就是从0到9,因为百位1已经比上界2小了,后面数位枚举什么都不可能超过上界。所以问题就在于:当高位枚举刚好达到上界是,那么紧接着的一位枚举就有上界限制了。具体的这里如果百位枚举了2,那么十位的枚举情况就是0到1,如果前两位枚举了21,最后一位之是0到3(这一点正好对于代码模板里的一个变量limit 专门用来判断枚举范围)。最后一个问题:最高位枚举0:百位枚举0,相当于此时我枚举的这个数最多是两位数,如果十位继续枚举0,那么我枚举的就是以为数咯,因为我们要枚举的是小于等于ri的所以数,当然不能少了位数比ri小的咯!(这样枚举是为了无遗漏的枚举,不过可能会带来一个问题,就是前导零的问题,模板里用lead变量表示,不过这个不是每个题目都是会有影响的,可能前导零不会影响我们计数,具体要看题目)
由于这种新的枚举只控制了上界所以我们的Main函数总是这样:
int main()
{
long long le,ri;
while(~scanf("%lld%lld",&le,&ri))
printf("%lld\n",solve(ri)-solve(le-1));
}
typedef long long ll;
int a[20];
ll dp[20][state];//不同题目状态不同
ll dfs(int pos,/*state变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零
{
//递归边界,既然是按位枚举,最低位是0,那么pos==-1说明这个数我枚举完了
if(pos==-1) return 1;/*这里一般返回1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。不过具体题目不同或者写法不同的话不一定要返回1 */
//第二个就是记忆化(在此前可能不同题目还能有一些剪枝)
if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state];
/*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面会讲*/
int up=limit?a[pos]:9;//根据limit判断枚举的上界up;这个的例子前面用213讲过了
ll ans=0;
//开始计数
for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了
{
if() ...
else if()...
ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的
/*这里还算比较灵活,不过做几个题就觉得这里也是套路了
大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论
去计算不同情况下的个数,还有要根据state变量来保证i的合法性,比如题目
要求数位上不能有62连续出现,那么就是state就是要保存前一位pre,然后分类,
前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/
}
//计算完,记录状态
if(!limit && !lead) dp[pos][state]=ans;
/*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
return ans;
}
ll solve(ll x)
{
nt pos=0;
while(x)//把数位都分解出来
{
a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行
x/=10;
}
return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛
}
int main()
{
ll le,ri;
memset(dp,-1,sizeof(dp));
//求区间[le,ri]内符合的个数
while(~scanf("%lld%lld",&le,&ri))
{
printf("%lld\n",solve(ri)-solve(le-1));
}
}
数位dp(贴一个模板=。=)的更多相关文章
- 数位dp讲解及模板
转载自:传送门 数位DP其实是很灵活的,所以一定不要奢求一篇文章就会遍所有数位DP的题,这一篇只能是讲清楚一种情况,其他情况遇到再总结,在不断总结中慢慢体会这个思想,以后说不定就能达到一看到题目就能灵 ...
- 数位dp小结以及模板
这里是网址 别人的高一啊QAQ.... 嗯一般记忆化搜索是比递推好写的所以我写的都是dfs嗯......(因为我找不到规律啊摔,还是太菜.....) 显然这个东西的条件是非常的有套路..但是不管怎么样 ...
- poj3252(数位dp)(模板)
题目链接:https://vjudge.net/problem/POJ-3252 题意:求[l,r]之间的Round Number数,RN数即化为二进制后0的个数不少于1的个数的数. 思路:之前用组合 ...
- HDU - 4722 Good Numbers 【找规律 or 数位dp模板】
If we sum up every digit of a number and the result can be exactly divided by 10, we say this number ...
- Codeforces 55D (数位DP+离散化+数论)
题目链接: http://poj.org/problem?id=2117 题目大意:统计一个范围内数的个数,要求该数能被各位上的数整除.范围2^64. 解题思路: 一开始SB地开了10维数组记录情况. ...
- hdu 5106 Bits Problem(数位dp)
题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...
- 题解——HDU 4734 F(x) (数位DP)
这道题还是关于数位DP的板子题 数位DP有一个显著的特征,就是求的东西大概率与输入关系不大,理论上一般都是数的构成规律 然后这题就是算一个\( F(A) \)的公式值,然后求\( \left [ 0 ...
- 洛谷 - P2602 - 数字计数 - 数位dp
https://www.luogu.org/problemnew/show/P2602 第二道数位dp,因为“数位dp都是模板题”(误),所以是从第一道的基础上面改的. 核心思想就是分类讨论,分不同情 ...
- UVa 1009 Sharing Chocolate (数位dp)
题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...
随机推荐
- 昨天还在for循环里写加号拼接字符串的那个同事,今天已经不在了
引言 都说 StringBuilder 在处理字符串拼接上效率要强于 String,但有时候我们的理解可能会存在一定的偏差.最近我在测试数据导入效率的时候就发现我以前对 StringBuilder 的 ...
- git线上操作
选择线上仓库 """ 1.注册码云账号并登录:https://gitee.com/ 2.创建仓库(课堂截图) 3.本地与服务器仓库建立连接 ""&qu ...
- 栈的Java实现-分别使用数组和链表
栈是非常重要的数据结构,栈具有后进先出的特点. 在JVM内部,每个线程维护一个栈,对于每个方法调用,入栈一个元素,成为栈帧,当方法执行完成后,对应的栈帧出栈. 栈帧中,也包含一个栈,称为操作数栈. 一 ...
- jstl中ftm标签用法
<fmt:formatDate value="${dateTime}" pattern="yyyy/MM/dd HH:mm:ss"/>
- 原创-公司项目部署交付环境预检查shell脚本
大型项目环境预检查脚本,根据自己实际情况修改脚本中变量,给大家一个思路~ #!/usr/bin/env bash root=$( cd $(dirname $0) pwd ) source " ...
- springmvc 源码分析(二)-- DiapartcherServlet核心调用流程分析
测试环境搭建: 本次搭建是基于springboot来实现的,代码在码云的链接:https://gitee.com/yangxioahui/thymeleaf.git 项目结构代码如下: 一: cont ...
- python学习笔记1之-python简介及其环境安装
python学习笔记之-python简介及其环境安装 最近几年python之火不用多说,最近开始利用时间自学python,在学习的过程中,按照自己的思路和理解记录下学习的过程,并分享出来,如果正好你也 ...
- Python-变量-字符串
str 字符串如何表示字符串? 单行 单引号 '' 如果字符串中有单引号就需要双引号表示,反之亦然 双引号 " " 换行表示 \ one_str = "简洁胜于优雅&qu ...
- Go-注释
什么是注释? 注释是给开发人员看的,目的是降低开发人员阅读代码的时间成本和代码阅读困难程度 Go-注释内容 1. 包注释,位于某个包下Go程序文件的顶部 2. 函数注释,位于Go函数的头部 3. 代码 ...
- java泛型之通配符?
一.在说泛型通配符" ?" 之前先讲几个概念 1.里氏替换原则(Liskov Substitution Principle, LSP): 定义:所有引用基类(父类)的地方必须能透明 ...