Codeforce 839 B. Game of the Rows 解析(思維)

今天我們來看看CF839B

題目連結

題目

有如下圖片所示的飛機座位\(n\)排,和\(k\)隊士兵,每隊數量不一定。



求是否可以每隊都坐上去並且沒有任何兩個士兵相鄰「並且」是不同隊的。

前言

思考時小心一點,記得座位有很多種捨棄方法

想法

注意到,在座位足夠的情況下,我們可以有三步驟的方法來捨去座位。

  1. 把中間的\(4\)個座位分成\(1,2\)人座位 (此步把可以得到的間隔都得到了)
  2. 把左右的2個2人座位隨便選一個(或者兩個都選)捨去一個座位,變成\(1\)人座位
  3. 把中間已經拆成\(1,2\)人座位的4個座位,再捨去一個,變成\(1,1\)人座位

(\(2.3.\)兩個步驟是在把\(2\)人座位換成\(1\)人座位,這樣才能方便等等的分配座位順利運行)

接著要把士兵一隊一隊分配進去。現在已經有\(1,2,4\)人座位的數量了,而這些座位都是分開的,那麼我們只要從最大的座位開始把士兵分配進去就好。

程式碼:

const int _n=1e4+10;
int t,tt,ttt,n,k,a[_n],sum=0,cnt[5];
main(void) {cin.tie(0);ios_base::sync_with_stdio(0);
cin>>n>>k;rep(i,0,k){cin>>a[i];sum+=a[i];} cnt[2]=2*n,cnt[4]=n;
t=min(n,8*n-sum); cnt[1]=t,cnt[2]+=t,cnt[4]-=t;
if(t==n){tt=min(2*n,8*n-n-sum); cnt[1]+=tt,cnt[2]-=tt;}
if(tt==2*n){ttt=min(n,8*n-n-n-n-sum); cnt[1]+=ttt,cnt[2]-=ttt;}
rep(i,0,k){
int f=min(cnt[4],a[i]/4);
cnt[4]-=f; a[i]-=4*f;
f=min(cnt[2],a[i]/2);
cnt[2]-=f; a[i]-=2*f;
f=min(cnt[1],a[i]);
cnt[1]-=f; a[i]-=f;
if(a[i]){cout<<"NO\n";return 0;}
}cout<<"YES\n";
return 0;
}

標頭、模板請點Submission看

Submission

B. Game of the Rows 解析(思維)的更多相关文章

  1. A. Arena of Greed 解析(思維)

    Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...

  2. E. Almost Regular Bracket Sequence 解析(思維)

    Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...

  3. C2. Power Transmission (Hard Edition) 解析(思維、幾何)

    Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...

  4. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

  5. B. Two Arrays 解析(思維)

    Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...

  6. C. k-Amazing Numbers 解析(思維)

    Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...

  7. D. Road to Post Office 解析(思維)

    Codeforce 702 D. Road to Post Office 解析(思維) 今天我們來看看CF702D 題目連結 題目 略,請直接看原題. 前言 原本想說會不會也是要列式子解或者二分搜,沒 ...

  8. C. Bank Hacking 解析(思維)

    Codeforce 796 C. Bank Hacking 解析(思維) 今天我們來看看CF796C 題目連結 題目 略,請直接看原題. 前言 @copyright petjelinux 版權所有 觀 ...

  9. B. Kay and Snowflake 解析(思維、DFS、DP、重心)

    Codeforce 685 B. Kay and Snowflake 解析(思維.DFS.DP.重心) 今天我們來看看CF685B 題目連結 題目 給你一棵樹,要求你求出每棵子樹的重心. 前言 完全不 ...

随机推荐

  1. 喜大普奔!GitHub中文版帮助文档上线了!

    日前,GitHub 文档的简体中文正式发布,开发者可以到官方文档上随意查阅浏览中文文档啦!   对于想要玩 GitHub,但一直苦于英语水平较差的程序员来说,这真是一个天大的好消息.下面一起来感受一下 ...

  2. 《Mybatis进阶》肝了30天专栏文章,整理成册,免费获取!!!

    持续原创输出,点击上方蓝字关注我吧 目录 前言 简介 如何获取? 总结 前言 Mybatis专栏文章写到至今已经有一个月了,从基础到源码详细的介绍了每个知识点,没什么多余的废话,全是工作.面试中常用到 ...

  3. python-数组+递归实现简单代数式运算

    #!/usr/bin/env python3# -*- coding: utf-8 -*-#思路: #代数式是为字符串 #先将字符串处理为数值与运算符号的数组 #逐项读入数组 #每一次处理不少过两个变 ...

  4. linux与linux间,互相拷贝文件

    直接使用scp命令 和远程Linux主机 进行文件的拷贝    1.可以将远程Linux系统上的文件拷贝到本地计算机    2.也可以将本地计算机上的文件拷贝到远程Linux系统上. 比如:我们要拷贝 ...

  5. 详细分析 Java 中实现多线程的方法有几种?(从本质上出发)

    详细分析 Java 中实现多线程的方法有几种?(从本质上出发) 正确的说法(从本质上出发) 实现多线程的官方正确方法: 2 种. Oracle 官网的文档说明 方法小结 方法一: 实现 Runnabl ...

  6. 【FastDFS】SpringBoot整合FastDFS实战,我只看这一篇!!

    写在前面 在<[FastDFS]小伙伴们说在CentOS 8服务器上搭建FastDFS环境总报错?>和<[FastDFS]面试官:如何实现文件的大规模分布式存储?(全程实战)> ...

  7. Markdown 1.0.1

    简介 Markdown 是由 John Gruber 于2004年开发一种轻量级标记语言,它是一个面向web作者的 text-to-HTML 转换工具.Markdown编辑器允许您使用纯文本格式编写, ...

  8. Java 集合 | 红黑树 | 前置知识

    一.前言 0tnv1e.png 为啥要学红黑树吖? 因为笔者最近在赶项目的时候,不忘抽出时间来复习 Java 基础知识,现在准备看集合的源码啦啦.听闻,HashMap 在 jdk 1.8 的时候,底层 ...

  9. 简说Modbus-RTU与Modbus-ASCII

    Modbus在串行总线通信中的协议有RTU和ASCII两种.RTU是Remote Terminal Unit的缩写,意思是远程终端单元.ASCII是American Standard Code for ...

  10. Xnip Mac上方便好用的截图工具

    Xnip Mac上方便好用的截图工具 标注 Xnip 拥有齐全的标注功能,您可以对截取的图片进行标注,在标注的同时还能重新调整截图大小. 查看标注操作 GIF 滚动截图 Xnip 的滚动截图功能可以让 ...