Hadoop介绍与安装
前言
最近想学习下大数据,有点急于求成,于是去网上找了各种培训机构的视频,发现大都质量不佳,理论基本不说或者简单讲下,然后教你照猫画虎的敲代码,出了问题都没法分析。最后还是找了厦门大学的公开课从理论开始稳扎稳打的学习了。
一 Hadoop起源
Hadoop的理论起源主要来自谷歌公司的三大论文,并迅速应用于全球各大互联网公司。因此,学习大数据Hadoop是绕不开的一个知识点。今年来,大数据的兴起其实来自于计算机技术的发展,物联网技术产生了大量的数据,云技术使得计算机存储与运算资源更加普及,因此大数据技术应运而出,用以解决大量数据的存储与计算的问题。
二 Hadoop生态圈
学习Hadoop,需要知道Hadoop生态圈中各个项目的功能与作用,为何要用开发这种新项目,而不使用已有项目实现这种功能。
2.1 HDFS
Hadoop的底层文件系统,与传统文件系统不同在于它是分布式的。同时与已有的分布式文件系统相比,它又有着旧分布式文件系统没有的优点。如:高可用性,高可靠性,吞吐量大,能使用廉价服务器构建,可通过不断增加机器数来进行拓展。具体实现在HDFS文章中记录。
2.2 HBase
构建在HDFS之上的分布式数据库系统。是一种基于列的NoSQL数据库,从另一个角度看也能看成键值对的NoSQL数据库。与传统关系型数据库相比,最大的优势在于可通过增加机器进行横向扩展,并且能使用廉价服务器。
2.3 Hive
一种分布式数据仓库,可以导入外部数据后用类SQL语言进行操作。一般用于历史数据的查询与分析。与HBase不同,HBase常用于实时的交互式查询。
2.4 MapRuduce
一种分布式计算框架,MapRuce本来就是一种计算模型的名称。核心思想是“分而治之”,能将计算分解成多个小计算,由多个机器同时计算。适合离线批处理。
2.5 Storm
一种流式计算框架,MapRuce适合批处理,无法完成流式数据的处理,因此开发出流式处理框架。
2.6 常见大数据处理需求
- 离线批处理,特点:使用历史数据,大批量的处理,要求吞吐率。
- 实时交互式处理,特点:用户交互使用,要求反映速度在秒级到数分钟之间。
- 流式数据处理,特点:数据以流的形式输入,要求毫秒级的处理速度,且处理后的数据大部分都不用储存。
2.7 Hadoop组件关系
基本的关系就是,底层用HDFS存储,之上是核心计算框架MapRuduce。而Hive,Hbase,Pig等等组件一般都是将自身的操作转化成Mapreduce代码然后通过Mapreduce进行计算实现功能。同时与MapRuduce框架同一层次的Storm解决了流式数据的处理。Hbase虽然是使用Mapreduce框架进行处理,但是基本也能实现实时交互式处理的要求。(也正是Mapreduce存在种种问题,Spark渐渐兴起,虽然Mapreduce也做了各种优化,但是在某些领域相比Spark还是有些差距)。
三 Hadoop安装
准备。同一局域网的Linux服务器数台,我是用我的游戏本同时开了3个虚拟机代替的。
Linux里创建hadoop用户,专门负责Hadoop项目,便于管理与权限划分。
安装JDK,下载Hadoop时官方会指明JDK版本需求,设置JDK环境变量
安装SSH并设置免密登录。因为HDFS的NameNode与其他DateNode等节点的通讯与管理就是基于SSH协议的。并且将要使用的机器域名写入hosts文件,方便命名。
去官网下载并解压Hadoop。修改hadoop配置文件,位于hadoop/etc/hadoop /下面,分别有:
- slaves。写入DateNode的机器,因为之前修改了域名解析文件,可以直接写域名,不用写IP了。
- core-site.xml。Hadoop的核心配置文件
fs.defaultFS,默认文件系统的主机和端口,这里的文件系统就是hdfs。
hadoop.tmp.dir hadoop的临时文件路径,不设置则会使用系统临时文件路径,系统重启后就丢失了。
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://Master:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/usr/local/hadoop/tmp</value>
<description>Abase for other temporary directories.</description>
</property>
</configuration>
- hdfs-site.xml。HDFS的配置文件
dfs.namenode.secondary.http-address。SecondNameNode的机器和端口
dfs.replication。HDFS系统保存的文件副本数。
dfs.namenode.name.dir,dfs.datanode.data.dir。NameNode和DataNode数据在原本文件系统中的存放位置。
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>Master:50090</value>
</property>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/usr/local/hadoop/tmp/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/usr/local/hadoop/tmp/dfs/data</value>
</property>
</configuration>
- mapred-site.xml。MapReuce的配置文件
mapreduce.framework.name。MapReuce的资源管理系统。这个选yarn,原本是MapReuce自己进行分布式计算时的资源管理,后来发现效率不足便分割开来重新开发了一套框架。
mapreduce.jobhistory.address。MapReuce的任务日志系统,指定机器和端口。
mapreduce.jobhistory.webapp.address。任务日志系统web页面所使用的机器和端口,通过这个可以在web页面中查看任务日志系统。
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>Master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>Master:19888</value>
</property>
</configuration>
- yarn-site.xml。YARN的配置文件
yarn.resourcemanager.hostname。YARN的ResourceManager所使用的机器。这个负责进行全局的资源分配,管理。
yarn.nodemanager.aux-services。可以自定义一些服务,比如MapReuce的shuffle就是用这个配置的。目前我们使用填shuffle就行了。
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>Master</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
- 配置好以后将Hadoop文件从主节点复制到各个从节点,Hadoop的HADFS与MapReduce就安装完成了。(CentOs系统需要关闭相应防火墙)
四 Hadoop生态圈其他组件安装
看看网友博客和官方文档差不多就会了,基本一个形式。下载解压-配置环境变量-配置组件的配置文件,基本都是xxxx-env.sh,xxx-site.sh,xxx-core.sh,slave,work这种,在里面按照需求配置参数就好了,具体参数意思和必须要配置的参数看看官方文档也就懂了(滑稽)。
Hadoop介绍与安装的更多相关文章
- 从零自学Hadoop(19):HBase介绍及安装
阅读目录 序 介绍 安装 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 文章是哥(mephisto)写的,SourceLink 序 上一篇, ...
- 从零自学Hadoop(14):Hive介绍及安装
阅读目录 序 介绍 安装 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 文章是哥(mephisto)写的,SourceLink 序 本系列已 ...
- Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装
Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...
- 从零自学Hadoop(23):Impala介绍及安装
阅读目录 序 介绍 安装 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 文章是哥(mephisto)写的,SourceLink 序 上一篇, ...
- [Hadoop入门] - 1 Ubuntu系统 Hadoop介绍 MapReduce编程思想
Ubuntu系统 (我用到版本号是140.4) ubuntu系统是一个以桌面应用为主的Linux操作系统,Ubuntu基于Debian发行版和GNOME桌面环境.Ubuntu的目标在于为一般用户提供一 ...
- Hadoop单机模式安装
一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌面上的程序: ...
- Hadoop集群安装配置教程_Hadoop2.6.0_Ubuntu/CentOS
摘自:http://www.powerxing.com/install-hadoop-cluster/ 本教程讲述如何配置 Hadoop 集群,默认读者已经掌握了 Hadoop 的单机伪分布式配置,否 ...
- 3-1.Hadoop单机模式安装
Hadoop单机模式安装 一.实验介绍 1.1 实验内容 hadoop三种安装模式介绍 hadoop单机模式安装 测试安装 1.2 实验知识点 下载解压/环境变量配置 Linux/shell 测试Wo ...
- Storm介绍及安装部署
本节内容: Apache Storm是什么 Apache Storm核心概念 Storm原理架构 Storm集群安装部署 启动storm ui.Nimbus和Supervisor 一.Apache S ...
随机推荐
- FHS 层级文件系统
- 初次接触webpack
1.学习地址 中文文档 https://www.webpackjs.com/concepts/ webpack-dev-server配置说明 https://www.webpackjs.com/con ...
- ROS机器人开发实践学习笔记3
摘要: 刚刚开始学习ROS,打算入机器人的坑了,参考教材是<ROS及其人开发实践>胡春旭编著 机械工业出版社 华章科技出品.本来以为可以按照书上的步骤一步步来,但是,too young t ...
- Hadoop环境搭建|第一篇:linux操作系统安装
一.安装工具及文件 优盘:8G(非kingston优盘) 制作启动盘工具:Universal_USB_Installer 操作系统:CentOs操作系统 二.注意事项 安装过程的详细步骤,这里就不再赘 ...
- ORM SQLAlchemy 表于表的关系
1表与表之间三种关系 1.1 一对一关系 举例: 一个丈夫对应一个妻子,一个妻子对应一个丈夫 1.2 一对多关系 举例:一个人可以拥有多辆汽车,要求查询某个人拥有的所有车辆 分析:这种情况其实也可以采 ...
- 安装 PostgreSQL 时丢失 libintl-8.dll 解决方案
发表于 2013 年 11 月 13 日 修订于 2018 年 05 月 05 日 PostgreSQL 比 MySQL 有更多的高级特性,而且微信支付的数据库也是基于 PostgreSQL ...
- 性能优化 | JVM性能调优篇——来自阿里P7的经验总结
VM 调优概述: 性能定义: 吞吐量 - 指不考虑 GC 引起的停顿时间或内存消耗,垃圾收集器能支撑应用达到的最高性能指标. 延迟 - 其度量标准是缩短由于垃圾啊收集引起的停顿时间或者完全消除因垃圾收 ...
- iOS如何将RGB565的原始图像数据转为UIImage对象
我们在做一些图像处理时,往往会涉及到RGB565这种图像数据格式.由于其每个像素仅占2个字节,对于不需要像素透明度的情况下使用RGB565既能基本能保证图像的色彩,又能降低图像数据尺寸,节省带宽.因此 ...
- LVS+Keepalived小试牛刀
一.ipvsadm命令1.基本命令操作1.1)添加规则 ipvsadm -A|E -t|u|f service-address [-s scheduler] [-p timeout] [-M netm ...
- python3 super().__init__() 和 __init__() 的区别
1.单继承 super().__int__()和 Base.__init__(self)是一样的, super()避免了基类的显式调用. class Base(object): def __init_ ...