BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)
题面
一个无向图,一些点有固定权值,另外的点权值由你来定.
边的值为两点的异或值,一个无向图的值定义为所有边的值之和.
求无向图的最小值
分析
每一位都互不干扰,按位处理.
用最小割算最小值
- 保留原图的边,容量为1
- 如果当前点这一位是1,就从S连向当前点,容量为∞\infty∞
- 如果当前点这一位是0,就从当前点连向T,容量为∞\infty∞
那么这样一来,分在S一边就表示选,分在T一边就表示不选.如果相邻的两点在不同的集合,中间的边就必须断掉,造成1的代价,那么刚好相当于中间的边的值.
跑一遍最小割然后从S开始搜,不搜满流的边(也就是被割开的边),加上答案即可
- 对于在边值相等的情况下,要求点值最小的正确性如下:
在我们的最小割中,被划分在S一边表示选,那么一条增广路径上有多条满流边的时候,我们的搜索处理方法是遇到满流边就不往下走.所以我们割的边一定最靠近S集,也就是尽量地多让剩下点被分在T集(也就是选0),这样就满足了在同等情况下尽量选0使得点值最小. - 另一种方法是把边值设为10000,点值设为1.那么最小边值之和就是ans/10000,在此情况下的最小点值就是ans%10000
CODE
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long LL;
template<typename T>inline void read(T &num) {
char ch; int flg=1;
while((ch=getchar())<'0'||ch>'9')if(ch=='-')flg=-flg;
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
num*=flg;
}
const int inf = 1e9;
const int MAXN = 505;
const int MAXM = 20005;
int n, m, fir[MAXN], S, T, cnt;
struct edge { int to, nxt; LL c; }e[MAXM];
inline void add(int u, int v, LL cc, LL rc=0) {
e[cnt] = (edge){ v, fir[u], cc }; fir[u] = cnt++;
e[cnt] = (edge){ u, fir[v], rc }; fir[v] = cnt++;
}
int dis[MAXN], vis[MAXN], info[MAXN], cur, q[MAXN];
inline bool bfs() {
int head = 0, tail = 0;
vis[S] = ++cur; q[tail++] = S;
while(head < tail) {
int u = q[head++];
for(int i = fir[u]; ~i; i = e[i].nxt)
if(e[i].c && vis[e[i].to] != cur)
vis[e[i].to] = cur, dis[e[i].to] = dis[u] + 1, q[tail++] = e[i].to;
}
if(vis[T] == cur) memcpy(info, fir, (T+1)<<2);
return vis[T] == cur;
}
LL dfs(int u, LL Max) {
if(u == T || !Max) return Max;
LL flow=0, delta;
for(int &i = info[u]; ~i; i = e[i].nxt)
if(e[i].c && dis[e[i].to] == dis[u] + 1 && (delta=dfs(e[i].to, min(e[i].c, Max-flow)))) {
e[i].c -= delta, e[i^1].c += delta, flow += delta;
if(flow == Max) return flow;
}
return flow;
}
inline LL dinic() {
memset(vis, 0, sizeof vis);
LL flow=0, x;
while(bfs()) {
while((x=dfs(S, inf))) flow+=x;
}
return flow;
}
int A[MAXN], X[2005], Y[2005]; LL ans1, ans2;
bool flg[MAXN];
void Getans2(int u, int val) {
if(u) ans2 += val; flg[u] = 1;
for(int i = fir[u]; ~i; i = e[i].nxt)
if(e[i].c && !flg[e[i].to])
Getans2(e[i].to, val);
}
int main () {
read(n); read(m); S = 0, T = n+1;
for(int i = 1; i <= n; ++i) read(A[i]);
for(int i = 1; i <= m; ++i) read(X[i]), read(Y[i]);
for(int bit = 0; bit < 30; ++bit) {
memset(fir, -1, sizeof fir); cnt = 0;
for(int i = 1; i <= m; ++i) add(X[i], Y[i], 1, 1);
for(int i = 1; i <= n; ++i) {
if(A[i] < 0) continue;
if(A[i]&(1<<bit)) add(S, i, inf);
else add(i, T, inf);
}
memset(flg, 0, sizeof flg);
ans1 += dinic() * (1<<bit);
Getans2(S, 1<<bit);
}
printf("%lld\n%lld\n", ans1, ans2);
}
Upd:Upd:Upd:不开long longlong\ longlong long毁一生
BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)的更多相关文章
- 【bzoj2400】Spoj 839 Optimal Marks 按位最大流
Spoj 839 Optimal Marks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 908 Solved: 347[Submit][Stat ...
- Luogu SP839 OPTM - Optimal Marks(按位最小割)
这道题和 BZOJ 2400 是一道题,不多讲了 CODE #include <cstdio> #include <cstring> #include <vector&g ...
- 【BZOJ2400】Spoj 839 Optimal Marks 最小割
[BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...
- BZOJ2400: Spoj 839 Optimal Marks
Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其 ...
- spoj 839 Optimal Marks(二进制位,最小割)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17875 [题意] 给定一个图,图的权定义为边的两端点相抑或值的 ...
- SPOJ 839 Optimal Marks(最小割的应用)
https://vjudge.net/problem/SPOJ-OPTM 题意: 给出一个无向图G,每个点 v 以一个有界非负整数 lv 作为标号,每条边e=(u,v)的权w定义为该边的两个端点的标号 ...
- 【bzoj2400】Spoj 839 Optimal Marks 网络流最小割
题目描述 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其余的点的值由你 ...
- 839. Optimal Marks - SPOJ
You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...
- 图论(网络流):SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...
随机推荐
- [转帖]redis知识点总结
redis面试常问知识点总结 https://www.toutiao.com/i6740199554127233543/ 原创 波波说运维 2019-10-02 00:01:00 概述 今天主要分享一 ...
- Oracle 计算时间格式平均值
select to_char((to_date('2019-07-01', 'yyyy-mm-dd') + numtodsinterval(avg(begin_time_second), 'secon ...
- [数据结构] - ArrayList探究
一 概述 ArrayList可以理解为动态数组,与java的数组相比,它的容量能动态曾长,ArrayList是List接口的可变数组的实现,允许包括null值在内的所有元素.除了实现List接口外,此 ...
- C++Primer 5th Chap6 Functions
局部静态变量,关键字static修饰,即使函数结束执行也不受影响,生存期直到程序终止. java中static的单一存储空间的概念与其或有异曲同工之妙. 函数的形参可以无名,但有名可以使其意义更加清晰 ...
- Android 集成 支付宝支付
调用代码: ALiPayUtil.pay(getActivity(), new ALiPayUtil.PayResponse() { @Override public void success(Pay ...
- MySQL存储的字段是不区分大小写的,你知道吗?
做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 00 简单回顾 之前写过一篇关于mysql 对表大小写敏感的问题,其实在mysql中字段存储的内容是不区分大小写的,本篇进 ...
- C#通过地址获取省市区(基于百度地图API)
最近公司有个需求,想通过地址获取对应的省市区,本来想直接通过对地址的截取,对于完整的地址还可以,不完整的就没法用了 所以本篇通过百度地图API来获取地址 第一步:申请ak密钥 登录百度地图开放平台,按 ...
- C++ ifstream ofstream 注意事项
很久没写C++,已经完全不会写了... 在使用ifstream读取一个二进制文件时,发现读取的内容和源文件不相同,导致数据解析失败,于是尝试把用ifstream读取的内容用ofstream写入另一个文 ...
- Java 面向对象(七)多态
一.多态概述(Polymorphism) 1.引入 多态是继封装.继承之后,面向对象的第三大特性. 通过不同的事物,体现出来的不同的形态.多态,描述的就是这样的状态.如跑的动作,每个动物的跑的动作就是 ...
- CAS客户端认证流程
CAS登陆流程 Step 1:浏览器向CAS客户端发起登陆请求,CAS客户端生成“登陆URL”,并把浏览器重定向到该URL 登陆URL: https://${cas-server-host}:${ca ...