思路:高精度\((what)\)

提交:2次(后来发现有种更快的写法)

题解:

设\(n>m\),那么显然答案为\(C(n,m)\),相当于只能放\(m\)个棋子,可以在\(n\)列中选任意不同的\(m\)列上。

刚开始是这种解法:(\(3560ms\))

#include<cstdio>
#include<iostream>
#define ull unsigned long long
#define ll long long
#define R register int
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[1<<15],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-1:fix;
if(ch==EOF) return EOF; do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=36||ch>=127);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs; namespace Luitaryi {
const int N=1000010;
const ll B=1E+10;
int n,m,sz=1,c[N];
ll a[7];
inline void inc(int x) {for(R i=2;i*i<=x;++i) while(x%i==0) x/=i,++c[i]; if(x&&x!=1) ++c[x];}
inline void dec(int x) {for(R i=2;i*i<=x;++i) while(x%i==0) x/=i,--c[i]; if(x&&x!=1) --c[x];}
inline void mul(int x) { register ll tmp=0;
for(R i=1;i<=sz;++i) {
a[i]*=x,a[i]+=tmp;
tmp=a[i]/B,a[i]%=B;
} if(tmp) ++sz,a[sz]=tmp; if(sz>5) sz=5;
}
inline void calc() {for(R i=2;i<=n;++i) while(c[i]) mul(i),--c[i];}
inline void main() {
n=g(),m=g(); m>n?swap(n,m):void(0);
if(m==n) return (void)printf("1\n");
for(R i=n;i>m;--i) inc(i);
for(R i=2;i<=n-m;++i) dec(i);
a[1]=1; calc(); printf("%lld",a[sz]); for(R i=sz-1;i;--i) printf("%010lld",a[i]);
}
}
signed main() {
Luitaryi::main(); return 0;
}

后来看到有这样的:(快的一批\(260ms\))

#include<cstdio>
#include<iostream>
#define ull unsigned long long
#define ll long long
#define R register int
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[1<<15],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-1:fix;
if(ch==EOF) return EOF; do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
}
} using Fread::g; namespace Luitaryi {
const int N=1000010;
const ll B=1E+10;
int n,m,sz=1,cnt,c[N],mnd[N],pri[N>>1];
ll a[7];
inline void PRE(int n) {
for(R i=2;i<=n;++i) {
if(!mnd[i]) mnd[i]=i,pri[++cnt]=i;
for(R j=1;j<=cnt&&i*pri[j]<=n;++j) {
mnd[i*pri[j]]=pri[j];
if(i%pri[j]==0) break;
}
}
}
inline void inc(int x) {while(x>1) ++c[mnd[x]],x/=mnd[x];}
inline void dec(int x) {while(x>1) --c[mnd[x]],x/=mnd[x];}
inline void mul(int x) { register ll tmp=0;
for(R i=1;i<=sz;++i) {
a[i]*=x,a[i]+=tmp;
a[i]>=B?tmp=a[i]/B,a[i]%=B:tmp=0;
} if(tmp) a[++sz]=tmp; if(sz>5) sz=5;
}
inline void calc() {for(R i=1;i<=cnt;++i) while(c[pri[i]]) mul(pri[i]),--c[pri[i]];}
inline void main() {
n=g(),m=g(); m>n?swap(n,m):void(0); PRE(n);
if(m==n) return (void)printf("1\n");
for(R i=n;i>m;--i) inc(i);
for(R i=2;i<=n-m;++i) dec(i);
a[1]=1; calc(); printf("%lld",a[sz]); for(R i=sz-1;i;--i) printf("%010lld",a[i]);
}
}
signed main() {
Luitaryi::main(); return 0;
}

\(zz\)忽然感受到我数学白学了


2019.07.23

BZOJ 4807 車 组合数学的更多相关文章

  1. bzoj 4807: 車【组合数+高精+线性筛】

    设n>m,答案是\( C_n^m \),然后高精就行了 具体做法是先把指数筛出来,然后对每个数因数分解,记录质因子个数,最后被除数减去除数质因子个数,把剩下的质因子乘起来就行了 #include ...

  2. BZOJ4807:車(组合数学,高精度)

    Description 众所周知,車是中国象棋中最厉害的一子之一,它能吃到同一行或同一列中的其他棋子.車跟車显然不能在一起打起来,于是rly一天又借来了许多许多的車在棋盘上摆了起来……他想知道,在N× ...

  3. BZOJ 3997: [TJOI2015]组合数学 [偏序关系 DP]

    3997: [TJOI2015]组合数学 题意:\(n*m:\ n \le 1000\)网格图,每个格子有权值.每次从左上角出发,只能向下或右走.经过一个格子权值-1.至少从左上角出发几次所有权值为0 ...

  4. bzoj 3907: 网格 组合数学

    3907: 网格 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 13  Solved: 7[Submit][Status][Discuss] Descr ...

  5. bzoj 3997 [TJOI2015]组合数学(DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3997 [题意] 给定一个nm的长方形,每次只能使经过格子权值减1,每次只能向右向下,问 ...

  6. BZOJ 3997 TJOI2015 组合数学

    分析一下样例就可以知道,求的实际上是从左下角到右上角的最长路 因为对于任意不在这个最长路的上的点,都可以通过经过最长路上的点的路径将这个点的价值减光 (可以用反证法证明) 之后就是一个非常NOIP的D ...

  7. BZOJ 1008 越狱 (组合数学)

    题解:正难则反,从总数中减去全部相邻不相同的数目就是答案,n*(n-1)^(m-1):第一个房间有n中染色方案,剩下m-1个房间均只有n-1种染色方案,用总数减就是答案. #include <c ...

  8. BZOJ 2142 礼物 组合数学 CRT 中国剩余定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] ...

  9. BZOJ 1008 越狱 组合数学

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1008 题目大意: 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗 ...

随机推荐

  1. C++程序设计学习-第2章

    第二章 变量与基本类型 1.基本内置类型 C++定义了一套包括算术类型和空类型在内的基本数据类型 算术类型:整型和浮点型,包括带符号类型(signed)和无符号类型(unsigned),带符号类型可以 ...

  2. python学习-23 函数

    函数 1.函数分为:数学定义的函数和编程语言中的函数 例如: - 数学定义的函数:y=2*x+1 - 编程语言的函数: def test(x): x += 1 return x def  :定义函数的 ...

  3. 【C#】课堂知识点#1

    标准数字格式字符串 https://docs.microsoft.com/zh-cn/dotnet/standard/base-types/standard-numeric-format-string ...

  4. SAS学习笔记13 SAS数据清洗和加工(续)

    查找缺失值 cha[*]和num[*]是建立数组cha和num,但不指定数组中的元素数 自动变量_character_表示数据集中的所有字符型变量 自动变量_numeric_表示数据集中的所有数值型变 ...

  5. SAS学习笔记7 合并语句(set、merge函数)

    set函数:纵向合并数据集 set语句进行纵向合并.set语句的作用是将若干个数据集依次纵向连接,并存放到data语句建立的数据集中.若set后面只有一个数据集,此时相当于复制的作用 注:data语句 ...

  6. (一)mybatis介绍

    一.mybatis简介 MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis ...

  7. .net Core CLR

    .net Core CLR是开源的.大部分文件是C++写成.这样他就可以编译后再不同的平台运行. https://github.com/dotnet/coreclr

  8. koa-router学习笔记

    koa-router 是koa框架的一个路由处理级别的中间件. 目录结构 ├── app.js ├── middleware │ ├── m1.js │ └── m2.js ├── package-l ...

  9. 表格中的DOM

    通过DOM来操作table跟在html中操作table是不一样的,下面来看看怎样通过DOM来操作table. 按照table的分布来创建: <table> <thead> &l ...

  10. js通俗易懂的&&与||或运算

    使用&&将返回第一个条件为假的值. 如果每个操作数的计算值都为true, 则返回最后一个计算过的表达式. let one = 1, two = 2, three = 3;console ...