8.Dropout
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小
batch_size = 64
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义三个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32) # 784-1000-500-10
W1 = tf.Variable(tf.truncated_normal([784,1000],stddev=0.1))
b1 = tf.Variable(tf.zeros([1000])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob) W2 = tf.Variable(tf.truncated_normal([1000,500],stddev=0.1))
b2 = tf.Variable(tf.zeros([500])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob) W3 = tf.Variable(tf.truncated_normal([500,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) #交叉熵
loss = tf.losses.softmax_cross_entropy(y,prediction)
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess:
sess.run(init)
for epoch in range(31):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5}) test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(test_acc) +",Training Accuracy " + str(train_acc))
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Iter 0,Testing Accuracy 0.9201,Training Accuracy 0.91234547
Iter 1,Testing Accuracy 0.9256,Training Accuracy 0.9229636
Iter 2,Testing Accuracy 0.9359,Training Accuracy 0.9328182
Iter 3,Testing Accuracy 0.9375,Training Accuracy 0.93716365
Iter 4,Testing Accuracy 0.9408,Training Accuracy 0.9411273
Iter 5,Testing Accuracy 0.9407,Training Accuracy 0.94365454
Iter 6,Testing Accuracy 0.9472,Training Accuracy 0.9484909
Iter 7,Testing Accuracy 0.9472,Training Accuracy 0.9502
Iter 8,Testing Accuracy 0.9516,Training Accuracy 0.95336366
Iter 9,Testing Accuracy 0.9522,Training Accuracy 0.95552725
Iter 10,Testing Accuracy 0.9525,Training Accuracy 0.95632726
Iter 11,Testing Accuracy 0.9566,Training Accuracy 0.9578909
Iter 12,Testing Accuracy 0.9574,Training Accuracy 0.9606182
Iter 13,Testing Accuracy 0.9573,Training Accuracy 0.96107274
Iter 14,Testing Accuracy 0.9587,Training Accuracy 0.9614546
Iter 15,Testing Accuracy 0.9581,Training Accuracy 0.9616727
Iter 16,Testing Accuracy 0.9599,Training Accuracy 0.96369094
Iter 17,Testing Accuracy 0.9601,Training Accuracy 0.96403635
Iter 18,Testing Accuracy 0.9618,Training Accuracy 0.9658909
Iter 19,Testing Accuracy 0.9608,Training Accuracy 0.9652
Iter 20,Testing Accuracy 0.9618,Training Accuracy 0.96607274
Iter 21,Testing Accuracy 0.9634,Training Accuracy 0.96794546
Iter 22,Testing Accuracy 0.9639,Training Accuracy 0.96836364
Iter 23,Testing Accuracy 0.964,Training Accuracy 0.96965456
Iter 24,Testing Accuracy 0.9644,Training Accuracy 0.9693091
Iter 25,Testing Accuracy 0.9647,Training Accuracy 0.9703818
Iter 26,Testing Accuracy 0.9639,Training Accuracy 0.9702
Iter 27,Testing Accuracy 0.9651,Training Accuracy 0.9708909
Iter 28,Testing Accuracy 0.9666,Training Accuracy 0.9711818
Iter 29,Testing Accuracy 0.9644,Training Accuracy 0.9710364
Iter 30,Testing Accuracy 0.9659,Training Accuracy 0.97205454
8.Dropout的更多相关文章
- 在RNN中使用Dropout
dropout在前向神经网络中效果很好,但是不能直接用于RNN,因为RNN中的循环会放大噪声,扰乱它自己的学习.那么如何让它适用于RNN,就是只将它应用于一些特定的RNN连接上. LSTM的长期记 ...
- Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...
- 正则化方法:L1和L2 regularization、数据集扩增、dropout
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- 深度学习(dropout)
other_techniques_for_regularization 随手翻译,略作参考,禁止转载 www.cnblogs.com/santian/p/5457412.html Dropout: D ...
- Deep learning:四十一(Dropout简单理解)
前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...
- 简单理解dropout
dropout是CNN(卷积神经网络)中的一个trick,能防止过拟合. 关于dropout的详细内容,还是看论文原文好了: Hinton, G. E., et al. (2012). "I ...
- [转]理解dropout
理解dropout 原文地址:http://blog.csdn.net/stdcoutzyx/article/details/49022443 理解dropout 注意:图片都在github上 ...
- [CS231n-CNN] Training Neural Networks Part 1 : parameter updates, ensembles, dropout
课程主页:http://cs231n.stanford.edu/ ___________________________________________________________________ ...
- 正则化,数据集扩增,Dropout
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- [Neural Networks] Dropout阅读笔记
多伦多大学Hinton组 http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf 一.目的 降低overfitting的风险 二.原理 ...
随机推荐
- Unity小白文——单例的定义
当类继承与MonoBehaviour时 public class TestSingle : MonoBehaviour { public static TestSingle Instance; voi ...
- 【POJ - 3685】Matrix(二分)
Matrix Descriptions 有一个N阶方阵 第i行,j列的值Aij =i2 + 100000 × i + j2 - 100000 × j + i × j,需要找出这个方阵的第M小值. In ...
- 《九阴真经:iOS黑客攻防秘籍》新书发布
本书内容易于理解,可以让读者循序渐进.系统性地学习iOS安全技术.书中首先细致地介绍了越狱环境的开发与逆向相关工具,然后依次讲解了汇编基础.动态调试.静态分析.注入与hook.文件格式,最后为大家呈现 ...
- day37 GIL、同步、异步、进程池、线程池、回调函数
1.GIL 定义: GIL:全局解释器锁(Global Interpreter Lock) 全局解释器锁是一种互斥锁,其锁住的代码是全局解释器中的代码 为什么需要全局解释器锁 在我们进行代码编写时,实 ...
- fastadmin model关联模型 关联查询问题
一对一关联 public function getGoodName(){ return $this->belongsTo('app\api\model\goods\Good','goods_go ...
- 9.centos7 安装mysql
sudo yum install libaio # 安装依赖包 检查 MySQL 是否已安装 sudo yum list installed | grep mysql 也可以通过命令 rpm -qa| ...
- 小记--------spark的Master主备切换机制原理分析及源码分析
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABfEAAAJwCAYAAAAp7ysfAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjw
- Swoft 2.0.3 重大更新,发布优雅的微服务治理
 什么是 Swoft ? Swoft 是一款基于 Swoole 扩展实现的 PHP 微服务协程框架.Swoft 能像 Go 一样,内置协程网络服务器及常用的协程客户端且常驻内存,不依赖传统的 PHP ...
- mpstat
mpstat--multiprocessor statistics,统计多处理器的信息 1.安装mpstat工具 [root@localhost ~]# yum install sysstat 2:展 ...
- 进阶Java编程(2)线程常用操作方法
线程常用操作方法 多线程的主要操作方法都在Thread类中定义的. 1,线程的命名和取得 多线程的运行状态是不确定的,那么在程序的开发之中为了可以获取到一些需要使用到的线程就只能依靠线程的名字来进行操 ...