import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小
batch_size = 64
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义三个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32) # 784-1000-500-10
W1 = tf.Variable(tf.truncated_normal([784,1000],stddev=0.1))
b1 = tf.Variable(tf.zeros([1000])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob) W2 = tf.Variable(tf.truncated_normal([1000,500],stddev=0.1))
b2 = tf.Variable(tf.zeros([500])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob) W3 = tf.Variable(tf.truncated_normal([500,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) #交叉熵
loss = tf.losses.softmax_cross_entropy(y,prediction)
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess:
sess.run(init)
for epoch in range(31):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5}) test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(test_acc) +",Training Accuracy " + str(train_acc))
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Iter 0,Testing Accuracy 0.9201,Training Accuracy 0.91234547
Iter 1,Testing Accuracy 0.9256,Training Accuracy 0.9229636
Iter 2,Testing Accuracy 0.9359,Training Accuracy 0.9328182
Iter 3,Testing Accuracy 0.9375,Training Accuracy 0.93716365
Iter 4,Testing Accuracy 0.9408,Training Accuracy 0.9411273
Iter 5,Testing Accuracy 0.9407,Training Accuracy 0.94365454
Iter 6,Testing Accuracy 0.9472,Training Accuracy 0.9484909
Iter 7,Testing Accuracy 0.9472,Training Accuracy 0.9502
Iter 8,Testing Accuracy 0.9516,Training Accuracy 0.95336366
Iter 9,Testing Accuracy 0.9522,Training Accuracy 0.95552725
Iter 10,Testing Accuracy 0.9525,Training Accuracy 0.95632726
Iter 11,Testing Accuracy 0.9566,Training Accuracy 0.9578909
Iter 12,Testing Accuracy 0.9574,Training Accuracy 0.9606182
Iter 13,Testing Accuracy 0.9573,Training Accuracy 0.96107274
Iter 14,Testing Accuracy 0.9587,Training Accuracy 0.9614546
Iter 15,Testing Accuracy 0.9581,Training Accuracy 0.9616727
Iter 16,Testing Accuracy 0.9599,Training Accuracy 0.96369094
Iter 17,Testing Accuracy 0.9601,Training Accuracy 0.96403635
Iter 18,Testing Accuracy 0.9618,Training Accuracy 0.9658909
Iter 19,Testing Accuracy 0.9608,Training Accuracy 0.9652
Iter 20,Testing Accuracy 0.9618,Training Accuracy 0.96607274
Iter 21,Testing Accuracy 0.9634,Training Accuracy 0.96794546
Iter 22,Testing Accuracy 0.9639,Training Accuracy 0.96836364
Iter 23,Testing Accuracy 0.964,Training Accuracy 0.96965456
Iter 24,Testing Accuracy 0.9644,Training Accuracy 0.9693091
Iter 25,Testing Accuracy 0.9647,Training Accuracy 0.9703818
Iter 26,Testing Accuracy 0.9639,Training Accuracy 0.9702
Iter 27,Testing Accuracy 0.9651,Training Accuracy 0.9708909
Iter 28,Testing Accuracy 0.9666,Training Accuracy 0.9711818
Iter 29,Testing Accuracy 0.9644,Training Accuracy 0.9710364
Iter 30,Testing Accuracy 0.9659,Training Accuracy 0.97205454

8.Dropout的更多相关文章

  1. 在RNN中使用Dropout

    dropout在前向神经网络中效果很好,但是不能直接用于RNN,因为RNN中的循环会放大噪声,扰乱它自己的学习.那么如何让它适用于RNN,就是只将它应用于一些特定的RNN连接上.   LSTM的长期记 ...

  2. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  3. 正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  4. 深度学习(dropout)

    other_techniques_for_regularization 随手翻译,略作参考,禁止转载 www.cnblogs.com/santian/p/5457412.html Dropout: D ...

  5. Deep learning:四十一(Dropout简单理解)

    前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...

  6. 简单理解dropout

    dropout是CNN(卷积神经网络)中的一个trick,能防止过拟合. 关于dropout的详细内容,还是看论文原文好了: Hinton, G. E., et al. (2012). "I ...

  7. [转]理解dropout

    理解dropout 原文地址:http://blog.csdn.net/stdcoutzyx/article/details/49022443     理解dropout 注意:图片都在github上 ...

  8. [CS231n-CNN] Training Neural Networks Part 1 : parameter updates, ensembles, dropout

    课程主页:http://cs231n.stanford.edu/ ___________________________________________________________________ ...

  9. 正则化,数据集扩增,Dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  10. [Neural Networks] Dropout阅读笔记

    多伦多大学Hinton组 http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf 一.目的 降低overfitting的风险 二.原理 ...

随机推荐

  1. liunx 中如何删除export设置的环境变量

    1,网上有资料说,export命令添加的环境变量,利用export -p 删除: 例如:export  KUBECONFIG="/etc/kubernetes/admin.conf" ...

  2. python 调试技巧

    1.以前都是用print来定位哪里报错,后面发现一个新的调试技巧 import pdb for i in range(nrows): : content = table.row_values(i) p ...

  3. 使用Docker Maven 插件进行镜像的创建以及上传至私服

    1.在进行服务容器化部署的时候,需要将服务以及其运行的环境整个打包做成一个镜像,打包的过程有两种办法,第一种是首选通过maven打成jar包,然后再编写dockerfile,执行docker buil ...

  4. SQL Server解惑——为什么你的查询结果超出了查询时间范围

    原文:SQL Server解惑--为什么你的查询结果超出了查询时间范围 废话少说,直接上SQL代码(有兴趣的测试验证一下),下面这个查询语句为什么将2008-11-27的记录查询出来了呢?这个是同事遇 ...

  5. Linux系列(0):入门之Linux版本说明以及用户登录与切换

    你知道你登录时所在目录吗? 知道根目录下有哪些子目录吗? 知道如何切换用户吗? 知道如何添加用户吗? 如果你不知道,那就可以了解一下本章节啦! 前言:你知道Linux有多少发行版吗,如下图所示: 1. ...

  6. centos服务器之间相互挂载(samba)

    前提:假设A服务器ip为:192.168.1.101 ,B服务器ip为:192.168.1.102现在要求把A服务器的/mnt/test 路径下的文件夹 共享到B服务器的/home/ceshi 下. ...

  7. Web前端开发JavaScript基础

    JavaScript 一种直译式脚本语言,是一种动态类型.弱类型.基于原型的语言,内置支持类型,它的解释器被称为JavaScript引擎,是浏览器的一部分,并且是被广泛用于客户端的脚本语言,JavaS ...

  8. 网站QQ客服链接代码

    个人QQ客服代码 <a href="tencent://message/?uin=QQ号码">在线咨询</a> 企业QQ客服代码 <a href=&q ...

  9. Vanya and Scales CodeForces - 552C (思维)

    大意: $101$个砝码, 重$w^0,w^1,...,w^{100}$, 求能否称出重量$m$. w<=3时显然可以称出所有重量, 否则可以暴力双端搜索. #include <iostr ...

  10. 使用JWT的ASP.NET CORE令牌身份验证和授权(无Cookie)——第1部分

    原文:使用JWT的ASP.NET CORE令牌身份验证和授权(无Cookie)--第1部分 原文链接:https://www.codeproject.com/Articles/5160941/ASP- ...