E - We Need More Bosses

CodeForces - 1000E

Your friend is developing a computer game. He has already decided how the game world should look like — it should consist of nn locations connected by mm two-waypassages. The passages are designed in such a way that it should be possible to get from any location to any other location.

Of course, some passages should be guarded by the monsters (if you just can go everywhere without any difficulties, then it's not fun, right?). Some crucial passages will be guarded by really fearsome monsters, requiring the hero to prepare for battle and designing his own tactics of defeating them (commonly these kinds of monsters are called bosses). And your friend wants you to help him place these bosses.

The game will start in location ss and end in location tt, but these locations are not chosen yet. After choosing these locations, your friend will place a boss in each passage such that it is impossible to get from ss to tt without using this passage. Your friend wants to place as much bosses as possible (because more challenges means more fun, right?), so he asks you to help him determine the maximum possible number of bosses, considering that any location can be chosen as ss or as tt.

Input

The first line contains two integers nn and mm (2≤n≤3⋅1052≤n≤3⋅105, n−1≤m≤3⋅105n−1≤m≤3⋅105) — the number of locations and passages, respectively.

Then mm lines follow, each containing two integers xx and yy (1≤x,y≤n1≤x,y≤n, x≠yx≠y) describing the endpoints of one of the passages.

It is guaranteed that there is no pair of locations directly connected by two or more passages, and that any location is reachable from any other location.

Output

Print one integer — the maximum number of bosses your friend can place, considering all possible choices for ss and tt.

Examples

Input

5 51 22 33 14 15 2

Output

2

Input

4 31 24 33 2

Output

3

题意:

给你一个无向图,让你招到一个路径,这条路径中”桥“最多。

输出最多的桥的数量。

思路:

直接用tarjan强连通缩点后建树,然后树的直径就是答案。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 700010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const int MAXN = maxn;
const int MAXM = maxn; struct Edge {
int to, next;
bool cut;
} edge[MAXM];
int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN]; //Belong数组的值是1~block
int Index, top;
int block;
bool Instack[MAXN];
int bridge; void addedge(int u, int v)
{
edge[tot].to = v; edge[tot].next = head[u]; edge[tot].cut = false;
head[u] = tot++;
}
void Tarjan(int u, int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for (int i = head[u]; i != -1; i = edge[i].next) {
v = edge[i].to;
if ( v == pre ) { continue; }
if ( !DFN[v] ) {
Tarjan(v, u);
if (Low[u] > Low[v]) { Low[u] = Low[v]; }
if (Low[v] > Low[u]) {
bridge++;
edge[i].cut = true;
edge[i ^ 1].cut = true;
}
} else if (Instack[v] && Low[u] > DFN[v]) {
Low[u] = DFN[v];
}
}
if (Low[u] == DFN[u]) {
block++;
do {
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
} while ( v != u );
}
}
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
} vector<int>vec[MAXN];
// 调用lca求最近公共祖先
// ans为在U和V之间加再加一个边,剩下的桥数量。
// int ans = 0; int ans = 0;
int dist[MAXN];
int id;
int num = -1;
void dfs(int x, int pre)
{
dist[x] = dist[pre] + 1;
for (auto y : vec[x]) {
if (y != pre) {
dfs(y, x);
}
}
}
void solve(int N)
{
memset(DFN, 0, sizeof(DFN));
memset(Instack, false, sizeof(Instack));
Index = top = block = 0;
Tarjan(1, 1);
for (int i = 1; i <= block; i++) {
vec[i].clear();
}
for (int u = 1; u <= N; u++)
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (Belong[u] != Belong[v]) {
vec[Belong[u]].push_back(Belong[v]);
}
// vec[Belong[v]].push_back(Belong[u]);
}
// repd(i, 1, block) {
// sort(ALL(vec[i]));
// vec[i].erase(unique(ALL(vec[i])), vec[i].end());
// }
dfs(1, 0);
repd(i, 1, block) {
if (dist[i] > num) {
num = dist[i];
id = i;
}
}
dfs(id, 0);
repd(i, 1, block) {
ans = max(ans, dist[i]);
}
printf("%d\n", ans - 1);
}
int n, m;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); init();
gg(n);
gg(m);
repd(i, 1, m) {
int x, y;
gg(x); gg(y);
addedge(x, y);
addedge(y, x);
}
solve(n); return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

E - We Need More Bosses CodeForces - 1000E (tarjan缩点,树的直径)的更多相关文章

  1. F - Warm up HDU - 4612 tarjan缩点 + 树的直径 + 对tajan的再次理解

    题目链接:https://vjudge.net/contest/67418#problem/F 题目大意:给你一个图,让你加一条边,使得原图中的桥尽可能的小.(谢谢梁学长的帮忙) 我对重边,tarja ...

  2. We Need More Bosses CodeForces - 1000E(缩点 建图 求桥 求直径)

    题意: 就是求桥最多的一条路 解析: 先求连通分量的个数 然后缩点建图  求直径即可 #include <bits/stdc++.h> #define mem(a, b) memset(a ...

  3. We Need More Bosses CodeForces - 1000E (无向图缩点)

    大意: 给定无向连通图, 定义两个点$s,t$个价值为切断一条边可以使$s,t$不连通的边数. 求最大价值. 显然只有桥会产生贡献. 先对边双连通分量缩点建树, 然后求直径即为答案. #include ...

  4. cf1000E We Need More Bosses (tarjan缩点+树的直径)

    题意:无向联通图,求一条最长的路径,路径长度定义为u到v必须经过的边的个数 如果把强联通分量都缩成一个点以后,每个点内部的边都是可替代的:而又因为这是个无向图,缩完点以后就是棵树,跑两遍dfs求直径即 ...

  5. codeforces GYM 100114 J. Computer Network 无相图缩点+树的直径

    题目链接: http://codeforces.com/gym/100114 Description The computer network of “Plunder & Flee Inc.” ...

  6. 4612 warm up tarjan+bfs求树的直径(重边的强连通通分量)忘了写了,今天总结想起来了。

    问加一条边,最少可以剩下几个桥. 先双连通分量缩点,形成一颗树,然后求树的直径,就是减少的桥. 本题要处理重边的情况. 如果本来就两条重边,不能算是桥. 还会爆栈,只能C++交,手动加栈了 别人都是用 ...

  7. CodeForces - 1000E :We Need More Bosses(无向图缩点+树的直径)

    Your friend is developing a computer game. He has already decided how the game world should look lik ...

  8. CF487E Tourists - Tarjan缩点 + 树剖 + multiset

    Solution 先Tarjan求出点双联通分量 并缩点. 用$multiset$维护 点双内的最小点权. 容易发现, 点双内的最小点权必须包括与它相连的割边的点权. 所以我们必须想办法来维护. 所以 ...

  9. Codeforces 734E Anton and Tree(缩点+树的直径)

    题目链接: Anton and Tree 题意:给出一棵树由0和1构成,一次操作可以将树上一块相同的数字转换为另一个(0->1 , 1->0),求最少几次操作可以把这棵数转化为只有一个数字 ...

随机推荐

  1. SpringCloud+Eureka快速搭建微服架构

    什么是springcloud? Springcloud是一个微服务框架,相比dubbo等,springcloud提供全套的分布式系统解决方案. Eureka是什么? Eureka是netflix的一个 ...

  2. SpringCloud学习(SPRINGCLOUD微服务实战)一

    SpringCloud学习(SPRINGCLOUD微服务实战) springboot入门 1.配置文件 1.1可以自定义参数并在程序中使用 注解@component @value 例如 若配置文件为a ...

  3. Python os 使用

    python os 使用 1. 获取文件所在路径 import os os.path.dirname(__file__)  获取当前文件的所在路径 print (os.path.dirname(os. ...

  4. 【VS开发】修改窗口背景颜色大全

    如何修改frame窗口的背景颜色?  MDI窗口的客户区是由frame窗口拥有的另一个窗口覆盖的.为了改变frame窗口背景的颜色,只需要这个客户区的背景颜色就可以了.你必须自己处理WM_ERASEB ...

  5. PowerShell .Net整套环境搭建及部署系列

    此系列包含一套完整的集群部署,全是个人原创(除第一个是摘抄的),转载请注明出处 其中DFS部分在国内资料极少,且全是重复的,还是外面好些,有问题可以给出解决方案 若内容有不详之处或你也同样被DFS所困 ...

  6. win7/xp解除系统限制的网速

    对电脑不熟悉者的方法: 1.单击“开始-开始搜索”,输入“gpedit.msc”,回车后即可打开“组策略对象编辑器”. 2.展开“计算机配置-管理模板-网络-QoS数据包计划程序”,双击右面设置栏中的 ...

  7. [转帖]PKI技术原理(收集 整理 归纳)

    PKI技术原理(收集 整理 归纳) https://blog.51cto.com/3layer/20430 总结归纳的 灰常好.. 7layer关注8人评论39427人阅读2007-03-14 11: ...

  8. ABC044 Digit Sum

    题目链接 我的思路略复杂,这里介绍一个比较简洁的做法. 对于 $b \le \sqrt{N}$,暴力枚举 $b$.对于 $b > \sqrt{N}$, 注意到在 $b$ 进制下 $N$ 至多有 ...

  9. 【LOJ】#3109. 「TJOI2019」甲苯先生的线段树

    LOJ#3109. 「TJOI2019」甲苯先生的线段树 发现如果枚举路径两边的长度的话,如果根节点的值是$x$,左边走了$l$,右边走了$r$ 肯定答案会是$(2^{l + 1} + 2^{r + ...

  10. c++ erase 中的坑

    先看一段正常的代码 #include <iostream> #include <string> using namespace std; int main() { " ...