问题分析

首先不难想到是虚树。建完虚树需要保持节点间原先的距离关系。

然后总距离和最小距离用树形DP求,最大距离用两遍dfs即可。注意统计的时候只对关键点进行统计。

真是麻烦

参考程序

ac的时候是loj上速度最后一页,代码第四长的……

#include <bits/stdc++.h>
using namespace std; const int Maxn = 1000010;
const long long INF = 1000000000010;
const int MaxLog = 20;
struct edge {
int To, Next;
long long Length;
edge() : To( 0 ), Next( 0 ), Length( 0LL ) {}
edge( int _To, int _Next, long long _Length ) :
To( _To ), Next( _Next ), Length( _Length ) {}
};
int n, q, k, A[ Maxn ], Important[ Maxn ];
int DFa[ Maxn ][ MaxLog ], Deep[ Maxn ], Dfn[ Maxn ], Time;
int Stack[ Maxn ];
int Flag[ Maxn ];
struct graph {
int Start[ Maxn ], Used, State;
edge Edge[ Maxn << 1 ];
graph() {}
inline void Init( int _DYT ) {
State = _DYT;
Used = 0;
return;
}
inline void AddDirectedEdge( int x, int y, long long Len ) {
if( Flag[ x ] != State ) {
Flag[ x ] = State;
Start[ x ] = 0;
}
Edge[ ++Used ] = edge( y, Start[ x ], Len );
Start[ x ] = Used;
return;
}
inline void AddUndirectedEdge( int x, int y, long long Len ) {
AddDirectedEdge( x, y, Len );
AddDirectedEdge( y, x, Len );
return;
}
};
graph Prime, Now;
long long Ans, Max, Min;
int Size[ Maxn ], Id; void Build( int u, int Fa ) {
Deep[ u ] = Deep[ Fa ] + 1;
Dfn[ u ] = ++Time;
DFa[ u ][ 0 ] = Fa;
for( int i = 1; i < MaxLog; ++i )
DFa[ u ][ i ] = DFa[ DFa[ u ][ i - 1 ] ][ i - 1 ];
for( int t = Prime.Start[ u ]; t; t = Prime.Edge[ t ].Next ) {
int v = Prime.Edge[ t ].To;
if( v == Fa ) continue;
Build( v, u );
}
return;
} inline bool Cmp( int x, int y ) {
return Dfn[ x ] < Dfn[ y ];
} int GetLca( int x, int y ) {
if( Deep[ x ] < Deep[ y ] ) swap( x, y );
for( int i = MaxLog - 1; i >= 0; --i )
if( Deep[ DFa[ x ][ i ] ] >= Deep[ y ] )
x = DFa[ x ][ i ];
if( x == y ) return x;
for( int i = MaxLog - 1; i >= 0; --i )
if( DFa[ x ][ i ] != DFa[ y ][ i ] ) {
x = DFa[ x ][ i ];
y = DFa[ y ][ i ];
}
return DFa[ x ][ 0 ];
} struct info {
long long Min, Sec;
info() : Min( INF ), Sec( INF ) {}
info( long long _Min, long long _Sec ) : Min( _Min ), Sec( _Sec ) {}
inline info operator + ( const long long Other ) const {
return info( Min + Other, Sec + Other );
}
inline info operator + ( const info Other ) const {
return ( Min < Other.Min ) ? info( Min, min( Sec, Other.Min ) ) : info( Other.Min, min( Min, Other.Sec ) ) ;
}
}; info GetMin( int u, int Fa ) {
info Ans = info( INF, INF );
if( Important[ u ] == Now.State ) Ans.Min = 0;
for( int t = Now.Start[ u ]; t; t = Now.Edge[ t ].Next ) {
int v = Now.Edge[ t ].To;
if( v == Fa ) continue;
Ans = Ans + ( GetMin( v, u ) + Now.Edge[ t ].Length );
}
Min = min( Min, Ans.Min + Ans.Sec );
return Ans;
} void GetMax( int u, int Fa, long long Len ) {
if( Len > Max && Important[ u ] == Now.State ) {
Max = Len;
Id = u;
}
for( int t = Now.Start[ u ]; t; t = Now.Edge[ t ].Next ) {
int v = Now.Edge[ t ].To;
if( v == Fa ) continue;
GetMax( v, u, Len + Now.Edge[ t ].Length );
}
return;
} long long GetAns( int u, int Fa ) {
Size[ u ] = 0; long long Sum = 0;
if( Important[ u ] == Now.State ) Size[ u ] = 1;
for( int t = Now.Start[ u ]; t; t = Now.Edge[ t ].Next ) {
int v = Now.Edge[ t ].To;
if( v == Fa ) continue;
long long SS = GetAns( v, u );
Ans += Sum * Size[ v ] + Size[ u ] * ( Now.Edge[ t ].Length * Size[ v ] + SS );
Sum += SS + Now.Edge[ t ].Length * Size[ v ];
Size[ u ] += Size[ v ];
}
return Sum;
} void Work( int Case ) {
Now.Init( Case );
scanf( "%d", &k );
for( int i = 1; i <= k; ++i ) scanf( "%d", &A[ i ] );
for( int i = 1; i <= k; ++i ) Important[ A[ i ] ] = Case;
sort( A + 1, A + k + 1, Cmp );
Stack[ 0 ] = 1; Stack[ 1 ] = 1;
int Len, Lca;
for( int i = 1; i <= k; ++i ) {
if( i == 1 && A[ 1 ] == 1 ) continue;
if( i > 1 && A[ i ] == A[ i - 1 ] ) continue;
Lca = GetLca( Stack[ Stack[ 0 ] ], A[ i ] );
if( Deep[ Lca ] == Deep[ Stack[ Stack[ 0 ] ] ] )
Stack[ ++Stack[ 0 ] ] = A[ i ];
else {
while( Deep[ Stack[ Stack[ 0 ] - 1 ] ] > Deep[ Lca ] ) {
Len = Deep[ Stack[ Stack[ 0 ] ] ] - Deep[ Stack[ Stack[ 0 ] - 1 ] ];
Now.AddUndirectedEdge( Stack[ Stack[ 0 ] - 1 ], Stack[ Stack[ 0 ] ], Len );
--Stack[ 0 ];
}
if( Deep[ Stack[ Stack[ 0 ] - 1 ] ] == Deep[ Lca ] ) {
Len = Deep[ Stack[ Stack[ 0 ] ] ] - Deep[ Stack[ Stack[ 0 ] - 1 ] ];
Now.AddUndirectedEdge( Stack[ Stack[ 0 ] - 1 ], Stack[ Stack[ 0 ] ], Len );
--Stack[ 0 ];
Stack[ ++Stack[ 0 ] ] = A[ i ];
} else {
Len = Deep[ Stack[ Stack[ 0 ] ] ] - Deep[ Lca ];
Now.AddUndirectedEdge( Stack[ Stack[ 0 ] ], Lca, Len );
--Stack[ 0 ];
Stack[ ++Stack[ 0 ] ] = Lca;
Stack[ ++Stack[ 0 ] ] = A[ i ];
}
}
}
while( Stack[ 0 ] > 1 ) {
Len = Deep[ Stack[ Stack[ 0 ] ] ] - Deep[ Stack[ Stack[ 0 ] - 1 ] ];
Now.AddUndirectedEdge( Stack[ Stack[ 0 ] ], Stack[ Stack[ 0 ] - 1 ], Len );
--Stack[ 0 ];
} Min = INF;
GetMin( 1, 0 );
Max = -1;
GetMax( A[ 1 ], 0, 0 );
Max = -1;
GetMax( Id, 0, 0 );
Ans = 0;
GetAns( 1, 0 );
printf( "%lld %lld %lld\n", Ans, Min, Max );
return;
} int main() {
scanf( "%d", &n );
for( int i = 1; i < n; ++i ) {
int x, y;
scanf( "%d%d", &x, &y );
Prime.AddUndirectedEdge( x, y, 1 );
}
Build( 1, 0 );
scanf( "%d", &q );
for( int i = 1; i <= q; ++i ) Work( i );
return 0;
}

「HEOI2014」大工程的更多相关文章

  1. 「ZJOI2016」大森林 解题报告

    「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...

  2. LOJ#2230. 「BJOI2014」大融合

    LOJ#2230. 「BJOI2014」大融合 题目描述 小强要在$N$个孤立的星球上建立起一套通信系统.这套通信系统就是连接$N$个点的一个树.这个树的边是一条一条添加上去的. 在某个时刻,一条边的 ...

  3. 【HEOI2014】大工程<虚树>

    虚树 我们每天都用心思索着,这究竟是为了什么呢?我想我也不知道,只是觉得如果人不思考问题就很无聊. 我觉得虚树不是什么数据结构,就是一种技巧或者工具.它能把树中\(k\)个关键点以\(O(klogk) ...

  4. 【BZOJ】【3611】【HEOI2014】大工程

    虚树+树形DP 本题100W的点数……不用虚树真的好吗…… Orz ZYF 我的感悟: dp的过程跟SPOJ 1825 FTOUR2 的做法类似,依次枚举每个子树,从当前子树和之前的部分中各找一条最长 ...

  5. 「HEOI2014」南园满地堆轻絮

    题目链接 戳我 题目出处 菩萨蛮·南园满地堆轻絮                                             温庭筠 南园满地堆轻絮,愁闻一霎清明雨.雨后却斜阳,杏花零落香 ...

  6. @loj - 2092@ 「ZJOI2016」大森林

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Y 家里有一个大森林,里面有 n 棵树,编号从 1 到 n. ...

  7. 【LOJ】#2230. 「BJOI2014」大融合

    题解 我现在真是太特么老年了 一写数据结构就颓废,难受 这题就是用lct维护子树 ???lct怎么维护子树 这样想,我们给每个点记录虚边所在的子树大小,只发生在Access和link的时候 这样的话我 ...

  8. loj2230 「BJOI2014」大融合

    LCT裸题 我LCT学傻了这题明显可以树剖我不会树剖了 本来的siz是Splay上的子树和,并没有什么用. 所以每个点维护虚子树和和子树和 虚子树和即虚边连接的子树和,且只有在access和link操 ...

  9. loj2092 「ZJOI2016」大森林

    ref不是太懂-- #include <algorithm> #include <iostream> #include <cstring> #include < ...

随机推荐

  1. 【原创】Linux基础之logrotate

    logrotate logrotate ‐ rotates, compresses, and mails system logs logrotate is designed to ease admin ...

  2. JS基础_基本数据类型和引用数据类型

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. 可能是全网最全的http面试答案

    HTTP有哪些方法? HTTP1.0定义了三种请求方法: GET, POST 和 HEAD方法 HTTP1.1新增了五种请求方法:OPTIONS, PUT, DELETE, TRACE 和 CONNE ...

  4. iframe标签(页面嵌套)

    本文链接:https://blog.csdn.net/weixin_44540236/article/details/92760494 两个不同的页面但是它们的基本框架都是一样,每点击一次左边的导航栏 ...

  5. linux基础—课堂随笔06_软件包管理

    软件包管理 rpm 包和包管理器 包的组成:  二进制文件.库文件.配置文件.帮助文件 程序包管理器:  debian: deb文件,dpkg包管理器  redhat:rpm文件,rpm包管理器  r ...

  6. 数据库——Oracle(7)

    1 索引(二):索引是用来提高查询的效率. 索引的优点和缺点: 优点:索引可以提高查询的速度. 缺点:创建索引会占用磁盘物理空间,而且添加索引,会减慢修改(insert,update,delete)数 ...

  7. 延长zencart1.5.x后台的15分钟登录时间和取消90天强制更换密码

    延长zencart1.5.x后台的15分钟登录时间 打开includes\functions\sessions.php if (IS_ADMIN_FLAG === true) { if (!$SESS ...

  8. Hdu 1517 巴什博奕变形

    易知2-9为先手胜 继续递推下去 10-18 后手胜 再推发现19-162先手胜 即发现有9(9) 18(2*9) 162(9*2*9)..... #include<bits/stdc++.h& ...

  9. Cookie/Session的机制

    Cookie的机制 Cookie是浏览器(User Agent)访问一些网站后,这些网站存放在客户端的一组数据,用于使网站等跟踪用户,实现用户自定义功能. Cookie的Domain和Path属性标识 ...

  10. Token认证的优势与劣势

    token 我们说的token,是指 访问资源的凭据 .使用基于 Token 的身份验证方法,在服务端不需要存储用户的登录记录. 大致流程: 客户端使用用户名跟密码请求登录服务端收到请求,验证用户名与 ...