Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/*
矩阵乘法+快速幂.
一开始迷之题意..
这个gcd有个规律.
a b
b c=a*x+b(x为常数).
然后要使b+c最小的话.
那x就等于1咯.
那么问题转化为求
a b
b a+b
就是斐波那契了....
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
#define mod 1000000007
using namespace std;
LL n;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void mi(LL n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
b[1][2]=ans[1][2]=1,b[2][1]=ans[2][1]=1;
b[1][1]=ans[1][1]=0;
b[2][2]=ans[2][2]=1;
mi(n);
ans[1][2]%=mod,ans[2][2]%=mod;
printf("%d ",min(ans[1][2],ans[2][2]));
printf("%d",max(ans[1][2],ans[2][2]));
}
int main()
{
freopen("gcd.in","r",stdin);
freopen("gcd.out","w",stdout);
n=read();
if(n==1) printf("1 1\n");
else slove();
return 0;
}
Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)的更多相关文章
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 4.28 省选模拟赛 负环 倍增 矩阵乘法 dp
容易想到 这个环一定是简单环. 考虑如果是复杂环 那么显然对于其中的第一个简单环来说 要么其权值为负 如果为正没必要走一圈 走一部分即可. 对于前者 显然可以找到更小的 对于第二部分是递归定义的. 综 ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- 矩阵乘法快速幂 codevs 1250 Fibonacci数列
codevs 1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1 ...
- ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)
We consider problems concerning the number of ways in which a number can be written as a sum. If the ...
- 矩阵乘法快速幂 cojs 1717. 数学序列
矩阵乘法模板: #define N 801 #include<iostream> using namespace std; #include<cstdio> int a[N][ ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
随机推荐
- 超详细,新手都能看懂 !使用SpringBoot+Dubbo 搭建一个简单的分布式服务
来自:JavaGuide Github 地址:https://github.com/Snailclimb/springboot-integration-examples 目录: 使用 SpringBo ...
- C#连接Oracle数据库的方法
目前了解C#中连接Oracle数据库的方法有3种,分布是微软的System.Data.OracleClient,Oracle的Oracle.DataAccess.Client和Oracle的Oracl ...
- C#动态生成Word文档并填充数据
C#也能动态生成Word文档并填充数据 http://www.cnblogs.com/qyfan82/archive/2007/09/14/893293.html 引用http://blog.csdn ...
- LeetCode 腾讯精选50题--链表排序
解题思路:归并 先把链表拆开,分为两部分,一直拆到只剩一个元素后,进行合并,利用一个临时节点记录重排后的链表的起始位置 合并不难,困难点在于如何拆分链表,自己的大体思路是利用两个指针,一个一次移动两位 ...
- 使用cnpm淘宝镜像
选装cnpm 1.说明:因为npm安装插件是从国外服务器下载,受网络影响大,可能出现异常,如果npm的服务器在中国就好了,所以我们乐于分享的淘宝团队干了这事. 2.官方网址:http://npm.ta ...
- 处理器拦截器(HandlerInterceptor)详解(转)
简介 SpringWebMVC的处理器拦截器,类似于Servlet开发中的过滤器Filter,用于处理器进行预处理和后处理. 应用场景 1.日志记录,可以记录请求信息的日志,以便进行信息监控.信息统计 ...
- Tomcat 输出日志出现中文乱码
Tomcat 输出日志出现中文乱码 解决方案: 打开到tomcat安装目录下的conf/文件夹 修改logging.properties文件,找到 java.util.logging.ConsoleH ...
- SpringMVC【二、项目搭建】
HelloWorld搭建 1.用Maven WebApp框架创建一个项目 红框中的是后添加的 2.添加pom引用(此处因为要引用多个spring包,建议把版本号提出来放到Properties) 会导入 ...
- 前端基础(四):BOM和DOM
前戏 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没有和浏览器有任何交互. 也就是我们还不能制作一些我们经常看到的网页的一些交互,我们需要继续学习BOM和DO ...
- 快速排序详解(lomuto划分快排,hoare划分快排,classic经典快排,dualpivot双轴快排源码)
目录 快速排序(lomuto划分快排,hoare划分快排,classic经典快排,dualpivot双轴快排) 一.快速排序思想 二.划分思想 三.测试用例 快速排序(lomuto划分快排,hoare ...