https://nanti.jisuanke.com/t/38223

Xiao Ming recently indulges in match stick game and he thinks he is good at it. His friend Xiao Jun decides to test him. Xiao Jun gives him an expression of length , made by match sticks and asks him to calculate the maximum value of the expression by moving any match sticks (but he can’t discard any of them). The expression is made up of some numbers, plus signs and minus signs represented as A_1 \ op_1 \ A_2 \ op_2 \ A_3 \ op_3 \ \cdots A_{m - 1} \ op_{m - 1} \ A_mA1​ op1​ A2​ op2​ A3​ op3​ ⋯Am−1​ opm−1​ Am​. mm must be count by himself, A_k(1 \le k \le m)Ak​(1≤k≤m) is an integer without leading zeros and less than 10^9109 , op_k (1 \le k \le m)opk​(1≤k≤m) is a plus sign or a minus sign. At the same time, there are some requirements of the new expression:

  1. The new expression should also be made up of mm numbers and m - 1m−1 operators.
  2. The number of digits per number should keep consistent with the original.
  3. There couldn’t be any leading zeros per number.

Input

The first line consists of a single integer TTdenoting the number of test cases.

There’re two lines in each test case.

The first line contains an integer nn.

A string of length nn follows in the next line, denoting the expression given.

The expression is guaranteed to be valid.

Output

For each test case, print a single integer denoting the maximum result of the expression.

Constraints

1 \le n \le 1001≤n≤100

Note

Expression with the maximum result for the second sample is 7 - 17−1 .

Expression with the maximum result for the second sample is 7 + 7 + 97+7+9.

样例输入复制

3
3
1-1
3
1+1
5
1+2+3

样例输出复制

0
6
23
题意:给出每个数字和加号减号需要的火柴数,然后给出t组多项式,求不改变多项式项数以及每项数字位数的前提下得到的多项式的最大值
题解:由于不存在括号而且加法和减法是同级运算,所以这个求解过程满足dp的子问题性质,可以使用dp解决,由于项数以及位数不能变,所以先dp出i个火柴能拼出的j位最大值和最小值,然后dp枚举每一项的前面的符号是+还是-,是加法就使用i火柴能拼出j位数字的最大值更新dp数组,否则就使用最小值更新
 #include<iostream>
#include<vector>
#include<cstring>
#include<cstdio>
#include<queue>
#include<map>
using namespace std;
char ch[];
map<char,int>mp;
typedef long long ll;
int q[];
ll dp[][],dp2[][],dp3[][];
vector<int>g[];
int main(){
int t;
scanf("%d",&t);
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
g[].push_back();
mp['']=;
mp['+']=;
mp['-']=;
memset(dp2,-,sizeof(dp2));
memset(dp3,-,sizeof(dp3));
dp2[][]=;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<;k++){
if(dp2[i-j][k-]!=-&&i>=j)dp2[i][k]=max(dp2[i-j][k-]*+g[j][g[j].size()-],dp2[i][k]);
// if(dp2[i-j]!=-1&&dp2[i][k]==-1&&i>=j)dp2[i][k]=dp2[i-j][k-1]*10+g[j][g[j].size()-1];
}
}
}
dp3[][]=;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<;k++){
if(dp3[i-j][k-]!=-&&i>=j)dp3[i][k]=min(dp3[i-j][k-]*+g[j][],dp3[i][k]);
if(dp3[i-j][k-]!=-&&dp3[i][k]==-&&i>=j)dp3[i][k]=dp3[i-j][k-]*+g[j][];
}
}
}
//for(int i=1;i<=12;i++)cout<<dp2[i]<<endl;
while(t--){
int n;
scanf("%d",&n);
scanf("%s",ch);
int tot=;
ll sum=;
int f=;
for(int i=;i<n;i++){
if(ch[i]=='+'||ch[i]=='-'){tot++;q[tot]=i-f;f=i+;}
sum+=mp[ch[i]];
}
q[++tot]=n-f;
memset(dp,-,sizeof(dp));
dp[][]=;
// cout<<sum<<endl;
for(int i=;i<=tot;i++){
for(int j=;j<=sum;j++){
for(int k=;k<=;k++){
//cout<<dp2[k][q[i]]<<endl;
if(i>&&j-k->=&&dp[i-][j-k-]!=-&&dp2[k][q[i]]!=-)dp[i][j]=max(dp[i-][j-k-]+dp2[k][q[i]],dp[i][j]);
if(i==&&j-k>=&&dp[i-][j-k]!=-&&dp2[k][q[i]]!=-)dp[i][j]=max(dp[i-][j-k]+dp2[k][q[i]],dp[i][j]);
if(j-k->=&&dp[i-][j-k-]!=-&&dp3[k][q[i]]!=-)dp[i][j]=max(dp[i-][j-k-]-dp3[k][q[i]],dp[i][j]);
if(dp[i][j]==-){
if(i>&&j-k->=&&dp[i-][j-k-]!=-&&dp2[k][q[i]]!=-){
dp[i][j]=dp[i-][j-k-]+dp2[k][q[i]];
}
if(i==&&j-k>=&&dp[i-][j-k]!=-&&dp2[k][q[i]]!=-){
dp[i][j]=dp[i-][j-k]+dp2[k][q[i]];
}
if(j-k->=&&dp[i-][j-k-]!=-&&dp3[k][q[i]]!=-){
dp[i][j]=dp[i-][j-k-]-dp3[k][q[i]];
}
}
}
}
}
printf("%lld\n",dp[tot][sum]);
}
return ;
}

[2019南昌邀请赛网络赛D][dp]的更多相关文章

  1. POJ-2796 & 2019南昌邀请赛网络赛 I. 区间最大min*sum

    http://poj.org/problem?id=2796 https://nanti.jisuanke.com/t/38228 背景 给定一个序列,对于任意区间,min表示区间中最小的数,sum表 ...

  2. 2019南昌邀请赛网络赛:J distance on the tree

    1000ms 262144K   DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(N ...

  3. 南昌邀请赛网络赛 D.Match Stick Game(dp)

    南昌邀请赛网络赛 D.Match Stick Game 题目传送门 题目就会给你一个长度为n的字符串,其中\(1<n<100\).这个字符串是一个表达式,只有加减运算符,然后输入的每一个字 ...

  4. 2019南昌邀请赛网络预选赛 M. Subsequence

    传送门 题意: 给出一个只包含小写字母的串 s 和n 个串t,判断t[i]是否为串 s 的子序列: 如果是,输出"YES",反之,输出"NO": 坑点: 二分一 ...

  5. 2019 ICPC南昌邀请赛网络赛比赛过程及题解

    解题过程 中午吃饭比较晚,到机房lfw开始发各队的账号密码,byf开始读D题,shl电脑卡的要死,启动中...然后听到谁说A题过了好多,然后shl让blf读A题,A题blf一下就A了.然后lfw读完M ...

  6. 计蒜客 2019南昌邀请网络赛J Distance on the tree(主席树)题解

    题意:给出一棵树,给出每条边的权值,现在给出m个询问,要你每次输出u~v的最短路径中,边权 <= k 的边有几条 思路:当时网络赛的时候没学过主席树,现在补上.先树上建主席树,然后把边权交给子节 ...

  7. 2019 ICPC南昌邀请赛 网络赛 K. MORE XOR

    说明 \(\oplus x​\)为累异或 $ x^{\oplus(a)}​$为异或幂 题意&解法 题库链接 $ f(l,r)=\oplus_{i=l}^{r} a[i]$ $ g(l,r)=\ ...

  8. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  9. icpc 南昌邀请赛网络赛 Max answer

    就是求区间和与区间最小值的积的最大值 但是a[i]可能是负的 这就很坑 赛后看了好多dalao的博客 终于a了 这个问题我感觉可以分为两个步骤 第一步是对于每个元素 以它为最小值的最大区间是什么 第二 ...

随机推荐

  1. [转帖]InnoDB与MyISAM等存储引擎对比

    InnoDB与MyISAM等存储引擎对比 https://blog.ouyangsihai.cn/innodb-yu-myisam-deng-cun-chu-yin-qing-dui-bi.html ...

  2. NOIP2017[提高组] 宝藏 题解

    解析 我们观察范围可以发现n非常的小,(一般来说不是搜索就是状压dp)所以说对于这题我们可以用记忆化搜索或者dp,我们发现起点不同那么最终答案也就不同,也就是说答案是跟起点有关的,于是我们便可以想到去 ...

  3. BJFU——205基于顺序存储结构的图书信息表的排序

    #include<stdio.h> #include<stdlib.h> #define MAX 1000 typedef struct{ double no; char na ...

  4. Python——多态、检查类型

    一.多态 Python变量并不需要声明类型,同一个变量可以在不同的时间引用不同的对象,当一个变量在调用同一个方法,可以呈现出多种行为,而具体呈现出哪种行为由该变量引用的对象来决定,这就是多态. 先看一 ...

  5. pandas之时间序列笔记

    时间戳tiimestamp:固定的时刻->pd.Timestamp 固定时期period:比如2016年3月份,再如2015年销售额->pd.Period 时间间隔interval:由起始 ...

  6. Fiddler抓取https原理

    首先fiddler截获客户端浏览器发送给服务器的https请求, 此时还未建立握手.第一步, fiddler向服务器发送请求进行握手, 获取到服务器的CA证书, 用根证书公钥进行解密, 验证服务器数据 ...

  7. 详解Ubuntu16.04安装Python3.7及其pip3并切换为默认版本(转)

    原文:https://www.jb51.net/article/156927.htm

  8. IIS发布问题解决

    一. HTTP Error 502.5 - ANCM Out-Of-Process Startup Failure ://安装AspNetCoreModule托管模块后执行1. net stop wa ...

  9. Neo4J之标签类型

    Neo4J的标签可以理解一个类,在创建一个节点时可以设置一个或多个标签: 1. 标签名为中文(可以) CRATE(节点名:标签1:标签2{属性1:34} 创建了一个节点名为“节点名”的节点(不可以用节 ...

  10. Go net/http 发送常见的 http 请求

    使用 golang 中的 net/http 包来发送和接收 http 请求 开启 web server 先实现一个简单的 http server,用来接收请求 package main import ...