pandas基础,Serires,Dataframe
DataFrame
DataFrame是Pandas中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。
Series
它是一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象
练习
import pandas as pd
import numpy as np
In [5]:
创建一个Series对象
s1 = pd.Series([4,6,-5,3])
[6]:
print(s1)
0 4
1 6
2 -5
3 3
dtype: int64
In [8]:
获取Series的值
s1.values#获取值
Out[8]:
array([ 4, 6, -5, 3], dtype=int64)
In [9]:
获取Series索引
s1.index#获取索引
Out[9]:
RangeIndex(start=0, stop=4, step=1)
In [10]:
指定索引创建Series对象
s2 = pd.Series([4.0,6.5,212,2.6],index=['a','b','c','d'])#指定索引
In [11]:
print(s2)
a 4.0
b 6.5
c 212.0
d 2.6
dtype: float64
In [12]:
根据Series索引取值
s2["a"]#根据索引取值
Out[12]:
4.0
In [15]:
s2[['c','d']]#取多个索引值
Out[15]:
c 212.0
d 2.6
dtype: float64
In [16]:
判断索引是否在Series
'c' in s2#判断索引是否在Series
Out[16]:
True
In [17]:
'e' in s2
Out[17]:
False
In [18]:
series可以看成一个定长的有序字典
#series可以看成一个定长的有序字典
dic1 = {"apple":5,"pen":'3',"applenpen":10}
s3 = pd.Series(dic1)
print(s3)#构建后顺序是一定的,不能改变
apple 5
pen 3
applenpen 10
dtype: object
In [20]:
DataFrame 构造
#DataFrame 构造
data = {'year':[2015,2016,2017,2018],
'income':[1000,2000,3000,4000],
'pay':[100,200,300,400]}
df1 = pd.DataFrame(data)
df1
Out[20]:
year | income | pay | |
---|---|---|---|
0 | 2015 | 1000 | 100 |
1 | 2016 | 2000 | 200 |
2 | 2017 | 3000 | 300 |
3 | 2018 | 4000 | 400 |
In [22]:
使用numpy构建dataframe
#使用numpy构建dataframe
df2 = pd.DataFrame(np.arange(12).reshape(3,4))
df2
'''
shape是查看数据有多少行多少列
reshape()是数组array中的方法,作用是将数据重新组织
'''
Out[22]:
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0 | 1 | 2 | 3 |
1 | 4 | 5 | 6 | 7 |
2 | 8 | 9 | 10 | 11 |
In [24]:
指定索引和表头(第一列内容)构建dataframe
#指定索引和表头(第一列内容)
df3 = pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'],columns=["金","木","水","火"])
df3
Out[24]:
金 | 木 | 水 | 火 | |
---|---|---|---|---|
a | 0 | 1 | 2 | 3 |
b | 4 | 5 | 6 | 7 |
c | 8 | 9 | 10 | 11 |
In [27]:
DataFrame的属性
#DataFrame的属性
df3.columns#列
#DataFrame的属性
df3.columns#列
Out[35]:
Index(['金', '木', '水', '火'], dtype='object')
In [28]:
Out[28]:
Index(['a', 'b', 'c'], dtype='object')
In [29]
df3.values#值,二位数组形式
Out[29]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [30]:
df3.describe
Out[30]:
<bound method NDFrame.describe of 金 木 水 火
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11>
In [31]:
转置
#转置
df3.T
Out[31]:
a | b | c | |
---|---|---|---|
金 | 0 | 4 | 8 |
木 | 1 | 5 | 9 |
水 | 2 | 6 | 10 |
火 | 3 | 7 | 11 |
In [32]:
排序
#排序
df3.sort_index(axis=1)#axis=1是对列排序
Out[32]:
木 | 水 | 火 | 金 | |
---|---|---|---|---|
a | 1 | 2 | 3 | 0 |
b | 5 | 6 | 7 | 4 |
c | 9 | 10 | 11 | 8 |
In [33]:
df3.sort_index(axis=0)#axis=0是对行排序
Out[33]:
金 | 木 | 水 | 火 | |
---|---|---|---|---|
a | 0 | 1 | 2 | 3 |
b | 4 | 5 | 6 | 7 |
c | 8 | 9 | 10 | 11 |
In [34]:
#对某一列排序
df3.sort_index(by="金")
c:\users\wuzs\appdata\local\programs\python\python36-32\lib\site-packages\ipykernel_launcher.py:2: FutureWarning: by argument to sort_index is deprecated, please use .sort_values(by=...)
Out[34]:
金 | 木 | 水 | 火 | |
---|---|---|---|---|
a | 0 | 1 | 2 | 3 |
b | 4 | 5 | 6 | 7 |
c | 8 | 9 | 10 | 11 |
pandas基础,Serires,Dataframe的更多相关文章
- Pandas 基础(2) - Dataframe 基础
上一节我们已经对 Dataframe 的概念做了一个简单的介绍, 这一节将具体看下它的一些基本用法: 首先, 准备一个 excel 文件, 大致内容如下, 并保存成 .csv 格式. 然后, 在 ju ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- Python 数据分析(一) 本实验将学习 pandas 基础,数据加载、存储与文件格式,数据规整化,绘图和可视化的知识
第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 ...
- Pandas基础学习与Spark Python初探
摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...
- numpy&pandas基础
numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ...
- Pandas 基础(1) - 初识及安装 yupyter
Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ...
- 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...
随机推荐
- deep_learning_Function_numpy_random.normal()
numpy常用函数之random.normal函数 np.random.normal(loc=0.0, scale=1.0, size=None) 作用: 生成高斯分布的概率密度随机数 loc:f ...
- 计划任务 at,cron
示例:每3小时echo和wall命令
- 解决tomcat控制台乱码+清除过期缓存条目后可用空间仍不足 - 请考虑增加缓存的最大空间问题
一.乱码 1.打开Tomcat的目录,找到conf文件夹,一般修改server.xml中的编码集,改为utf-8即可 2.若server.xml中编码设置的就是utf-8,可以修改logging.pr ...
- python面试题--连续出现最大次数
确实有段时间没怎么写python,手写还不上机是真的难受. 而且break 跳出循环最内一层的事情都要想一下才能写得出来. 题目如下: 寻找一个字符串最大连续出现次数,并放入字典中, s=" ...
- Python-multiprocessing-Process模块
获取当前执行该文件的进程ID import os # 获取当前执行该文件的进程ID print("Process (%s) start..." % os.getpid()) mul ...
- CentOS下安装libjpeg库及编译GD库
GD库明明安装了,可处理图片的时候还是报错 Fatal error: Call to undefined function imagecreatefromjpeg() .PHP安装后,默认的gd库不支 ...
- 【Python之路】异步IO
线程:CPU基本执行单元,可以与同属一个进程的其他线程共享资源,线程是属于进程的. 进程:资源单元,进程一般由程序.数据集.进程控制块三部分组成.一个进程默认有一个主线程, GIL:用于在进程中对所有 ...
- VirtualbBox:UEFI环境下安装VirtualBox
造冰箱的大熊猫@cnblogs 2018/12/18 1.问题 在一台新计算机上安装VirtualBox,启动虚拟机时出现“Kernel driver not installed (rc=-1908) ...
- TTTTTTTTTTTTTTTTTTT UVA 2045 Richness of words
J - Richness of words Time Limit:500MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64 ...
- (考试大整理~)Xxy 的车厢调度
这一题我以前研究过哈哈哈~ (train.cpp/c/pas) Description 有 一 个 火 车 站 , 铁 路 如 图 所 示 ,每辆火车从 A 驶入,再从 B 方向驶出,同时它的车厢可以 ...