python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

Keras并没有受到很多重视直到今年上半年,而且最令我惊讶的是今年第二季度Keras的受欢迎程度超过了Torch!现在比较流行的深度学习框架中,caffe的灵活度低(这个我本人没用过,只是有所耳闻),theano坑太大了,torch7似乎是个不错的选择但是不支持Python。在这种情况下,Keras会否成为数据科学界的新宠?
 

这几年一直在用TensorFlow和Theano,说点个人感受 :D

优点:
1、Keras基于python,backend可以是TensorFlow或Theano,人气比较旺。
2、和其他high-level API一样,都是直接提供上层的框架,很快可以搞出个神经网络原型。

缺点:
1、不支持seq2seq,搞不了高级点的nlp(现在好像支持了)。不过我发现tflearn,lasagne 都不支持seq2seq。目前只知道torch7支持。
2、在TensorFlow backend时,跑同样的模型比纯TensorFlow要慢一倍。。。
3、没有增强学习工具箱,自己修改实现很麻烦。
4、封装得太高级,训练细节不能修改、penalty细节很难修改、不合适算法研究。
5、用TensorFLow backend时速度比纯TensorFLow 下要慢很多。
6、最近更新很慢。

综上所述,我个人觉得:
Keras 适合快速体验 ,但若想学扎实一点则用 Tensorlayer 或者直接使用 TensorFlow 和 Theano。

 
链接:https://www.zhihu.com/question/35396126/answer/173032914

首先必须要说的就是,不管你要做什么,只要是deep leanring有关的,那么tensorflow是你不可能绕过的,就不说现在很多人论文用tensorflow,工业界用tensorflow的也很多,而且Google推出了tpc,毫无疑问有了tpu,tensorflow速度肯定会更快,可以很明显的感觉到Google在强推tensorflow,而tensorflow目前也算是默认的老大地位。

有了这一点,我们就可以来谈谈keras了,因为keras的后端有tensorflow,也就是说要使用tensorflow可以用keras来简单的代替。我之前一直觉得keras封装的太高级,不够灵活,而tensorflow又显得很笨重,所以对keras和tensorflow一直有点抵触,不想有tensorflow或者keras来实现模型。

后面出了pytorch,我就去玩pytorch去了,感觉pytorch特别轻,而且很灵活,突然我发现pytorch有好多地方和keras其实挺像的,于是有回到keras看了看,发现其实可以把keras和tensorflow结合起来用,这样既轻便,同时也有很强的灵活性,相当于把一些重复性的繁琐的操作用keras封装起来,而一些自己需要设计的东西呢还是可以用tensorflow自己设计,可以看看这个链接将Keras作为tensorflow的精简接口 - Keras中文文档

pytorch由于动态图的关系确实很灵活,但是performance应该不算很好,没有tensorboard可视化,虽然github有人自己想办法弄出来了,同时也分享了,但是还是略显麻烦,而且分布式支持应该也不太好,毕竟定位于科研,而caffe2应该是fb强推的工业化框架。

所以keras+tensorflow应该算是比较好的一种解决办法。对于初学者可以用keras搭搭积木,熟悉之后可以和tensorflow配合起来实现很多复杂功能。所以keras提供了从初学者到高级使用者都可以满足的功能,所以keras其实还是挺好的。

另外对于速度方面我没有比较过,不知道keras到底慢在什么方面,如果用keras+tensorflow,我觉得速度应该和tensorflow相当,毕竟只是使用了几个简单的layer封装,而训练过程还是暴露在tensorflow下。

个人愚见,以上。

 
 

keras的几大特点:
文档齐全
上手快速
纯Python编写
更新迅速
论坛活跃
就是运行速度不太快= =
不过我又不在乎速度~

另外,欢迎访问keras中文文档~
Keras中文文档
记得点进github的页面加颗星哦~

 

 https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

 
 
 
 
 

如何评价深度学习框架Keras?的更多相关文章

  1. 基于Theano的深度学习框架keras及配合SVM训练模型

    https://blog.csdn.net/a819825294/article/details/51334397 1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch, ...

  2. 深度学习框架Keras与Pytorch对比

    对于许多科学家.工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架.TensorFlow 1.0于2017年2月发布,可以说,它对用户不太友好. 在过去的几年里,两个主要的深度学习库 ...

  3. 深度学习框架Keras介绍及实战

    Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行.Keras 的开发重点是支持快速的实验.能够以最小的时延 ...

  4. 基于Windows,Python,Theano的深度学习框架Keras的配置

    1.安装Anaconda 面向科学计算的Python IDE--Anaconda 2.打开Anaconda Prompt 3.安装gcc环境 (1)conda update conda (2)cond ...

  5. 深度学习框架Keras安装

    环境:Windows 10 64位 版本!版本!版本!不要下载最新版本的! 一点要按照这个来!安装顺序也最好不要错! 首先安装DirectX SDK工具包 ,这是链接:https://www.micr ...

  6. 常用深度学习框架(keras,pytorch.cntk,theano)conda 安装--未整理

    版本查询 cpu tensorflow conda env list source activate tensorflow python import tensorflow as tf 和 tf.__ ...

  7. 一个可扩展的深度学习框架的Python实现(仿keras接口)

    一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将 ...

  8. Keras深度学习框架安装及快速入门

    1.下载安装Keras 如果你是安装的Anaconda组合套件,可以直接在Prompt上执行安装命令:pip install keras 注意:最下面为Successfully...表示安装成功! 2 ...

  9. 深度学习框架比较TensorFlow、Theano、Caffe、SciKit-learn、Keras

    TheanoTheano在深度学习框架中是祖师级的存在.Theano基于Python语言开发的,是一个擅长处理多维数组的库,这一点和numpy很像.当与其他深度学习库结合起来,它十分适合数据探索.它为 ...

随机推荐

  1. JavaMaven【六、生命周期】

    Maven有三个独立的生命周期,每个生命周期都不会出发别的生命周期的操作 若直接执行生命周期后面的操作,maven会默认执行前面的操作 如项目创建好后,直接执行mvn install,会默认依次执行c ...

  2. 6、SSH远程管理服务实战

    1.SSH基本概述 SSH是一个安全协议,在进行数据传输时,会对数据包进行加密处理,加密后在进行数据传输.确保了数据传输安全.那SSH服务主要功能有哪些呢? 1.提供远程连接服务器的服务. 2.对传输 ...

  3. Mysql(四)-2:多表查询

    一 介绍 本节主题 多表连接查询 复合条件连接查询 子查询 准备表 #建表 create table department( id int, name varchar(20) ); create ta ...

  4. DBUtils封装数据库返回对象的各种方法

    ①ArrayHandler:     将查询结果的第一行数据,保存到Object数组中       ②ArrayListHandler     将查询的结果,每一行先封装到Object数组中,然后将数 ...

  5. facenet中pairs文件制作

    1.对图片进行重命名 """Rename the image based on the folder name""" import os i ...

  6. matlab 基础知识1

    一.数组和矩阵注意 逗号 和 分号 的区别 向量生成方式: 传统方式:行向量 :空格,逗号列向量 :分号,回车 函数方式: x = linspace(a,b,n) 等分关系,从a 到 b, n等分.n ...

  7. Handler dispatch failed; nested exception is java.lang.NoClassDefFoundError: org/dom4j/io/SAXReader

    Handler dispatch failed; nested exception is java.lang.NoClassDefFoundError: org/dom4j/io/SAXReader ...

  8. springboot2.1.7整合Druid

    一.maven的依赖:文中就贴重点的, 其他依赖就不贴了 <dependency> <groupId>com.alibaba</groupId> <artif ...

  9. .net core 读取appsettings 的配置

    { "Logging": { "IncludeScopes": false, "LogLevel": { "Default&quo ...

  10. Gym - 101908J Joining Capitals (斯坦纳树)

    题意:二维平面上有n(n<=100)个点,其中k个是星星(k<=10),现要构造一棵树,每个星星对应树上的一个叶子结点,求最小花费(总花费为树上所有边的长度(两点间欧几里得距离)) 斯坦纳 ...