title: 【概率论】2-1:条件概率(Conditional Probability)

categories:

  • Mathematic
  • Probability

    keywords:
  • Conditional Probability
  • 条件概率
  • Multiplication Rule
  • 乘法原理
  • Partitions
  • Law of total Probability
  • 全概率公式

    toc: true

    date: 2018-01-31 10:34:36



Abstract: 本文介绍条件概率的定义及相关知识,提出全概率公式

Keywords: Conditional Probability,Multiplication Rule,Partitions

,Law of total Probability

开篇废话

关于学习看过不同人的很多说法,大部分来自“知乎(分享你新编的故事)”,虽然有些不太可信,但是有一些确实有点道理,比如有人问是否应该着重训练微积分的计算能力,其实这个问题我个人也有过,原因就是经过高考的人有点不太能把握“什么程度才能叫做一项知识学会了”,因为就算你对一个知识点非常透彻,但是还是有人能通过这个知识点创造出你完全不会解的题,于是我们就开始怀疑自己到底到底学会没学会,那微积分有必要反复做题么?有一个答案的大概意思是,反复训练微积分,就像反复训练加减法一样,过了小学,这个训练就没有必要进行了,这个似乎很有道理。

那么我们准备做机器学习的同学们有必要反复训练自己的基础算法么?比如线性回归啊,感知机啊什么的么?开始的时候当然很有必要,但是当你进入一定阶段了,就要研究其背后的分析方法的原理了,所以,会用算法,理解算法,分析算法是完全不同的层次,就像小学,大学还有博士阶段一样。所以,打好基础,学好数学,才能读博士.当然现在如火如荼的环境下,小学生就业也非常乐观。

今天继续概率论的讨论,本来想把事件的独立也添加到本文,但是后来分析了一下,内容太多容易乱,所以本文只介绍条件概率,还是那句话,好就不能快,多就不能省,虽然感觉时间紧迫,但是也要一步一步来。

The Definition of Conditional Probability(条件概率的定义)

以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-2-1-Conditional-Probability转载请标明出处

【概率论】2-1:条件概率(Conditional Probability)的更多相关文章

  1. 【概率论】3-6:条件分布(Conditional Distributions Part I)

    title: [概率论]3-6:条件分布(Conditional Distributions Part I) categories: Mathematic Probability keywords: ...

  2. 【概率论】3-6:条件分布(Conditional Distributions Part II)

    title: [概率论]3-6:条件分布(Conditional Distributions Part II) categories: Mathematic Probability keywords: ...

  3. 【概率论】4-7:条件期望(Conditional Expectation)

    title: [概率论]4-7:条件期望(Conditional Expectation) categories: - Mathematic - Probability keywords: - Exp ...

  4. Bayes’s formula for Conditional Probability

    Conditional Probability Example:In a batch, there are 80% C programmers, and 40% are Java and C prog ...

  5. 条件概率和链式法则 conditional probability & chain rule

    顾名思义, 条件概率指的是某个事件在给定其他条件时发生的概率, 这个非常符合人的认知:我们通常就是在已知一定的信息(条件)情况下, 去估计某个事件可能发生的概率. 概率论中,用 | 表示条件, 条件概 ...

  6. [水题日常]UVA11181 条件概率(Probability|Given)

    话说好久没写blog了 好好学概率论的第一天,这题一开始完全不会写,列出个条件概率的公式就傻了,后来看着lrj老师的书附带的代码学着写的- 因为我比较弱智 一些比较简单的东西也顺便写具体点或者是按照书 ...

  7. frequentism-and-bayesianism-chs-ii

    frequentism-and-bayesianism-chs-ii 频率主义 vs 贝叶斯主义 II:当结果不同时   这个notebook出自Pythonic Perambulations的博文  ...

  8. 自然语言处理(NLP) - 数学基础(1) - 总述

    正如我在<2019年总结>里说提到的, 我将开始一系列自然语言处理(NLP)的笔记. 很多人都说, AI并不难啊, 调现有库和云的API就可以啦. 然而实际上并不是这样的. 首先, AI这 ...

  9. 潜类别模型(Latent Class Modeling)

    1.潜类别模型概述 潜在类别模型(Latent Class Model, LCM; Lazarsfeld & Henry, 1968)或潜在类别分析(Latent Class Analysis ...

随机推荐

  1. 从业务流程角度:分析TMS系统各个功能模块

    TMS的主要功能是协调承运商.运营商.货主三种角色人员分工合作共同完成运输任务,并实现对运输任务的跟踪管理.本文将按照业务流程顺序对TMS系统各个功能模块进行分析说明. 一.业务描述 新零售的兴起及& ...

  2. (三)Spring框架之事务管理

    一.编程式事务管理 Spring事务管理器的接口是org.springframework.transaction.PlatformTransactionManager,事务管理器接口PlatformT ...

  3. 修改下jsp 默认编码,避免被坑

    修改下jsp 默认编码 ![](http://images2017.cnblogs.com/blog/1128666/201710/1128666-20171017143745927-14235413 ...

  4. ZROI17普及23-A.如烟题解--技巧枚举

    题目链接 因版权原因不予提供 分析 别看这是普及模拟赛,其实基本上是提高难度...像这题做NOIpT1的话也说的过去 有个很显然的暴力思路就是枚举c,a,b,时间复杂度\(O(N^3)\), 然后正解 ...

  5. Linux MySQL 常见无法启动或启动异常的解决方案

    Linux MySQL 常见无法启动或启动异常的解决方案 在 Linux 上自建 MySQL 服务器,经常遇到各种无法启动或启动后异常的问题,本文列举一些常见问题的解决办法. 注意:以下错误日志提示, ...

  6. A*算法与8数字谜题(参见《算法》P226习题2.5.32)

    A*算法的目的是找到一条从起始状态到最终状态的最短路径. 在A*算法中,需要在每个点计算启发函数:f(S) = g(S) + h(S),其中g(S)是从起点到S点的距离,h(S)是对从S点到终点的最短 ...

  7. 实现Bootstrap表格拖拽

    实现Bootstrap表格拖拽: 需要引入jquery.min.js.bootstrap相关文件,以及jquery.dragsort-0.5.2.js 代码如下: <html> <h ...

  8. 封装jquery的ajax

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. Vue路由嵌套

    Vue路由嵌套 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  10. ADF一个EO的事物提交周期

    客户端通过传递键对象调用实体定义的findByPrimaryKey(),获得EO.ADF框架首先检查实体缓存, 如果在实体缓存中没有找到实体,就执行SQL SELECT查询,从数据库读取行.示例如下: ...