题目链接:洛谷

首先我们考虑没有撤回操作的情况,就是将每一行和每一列看做一个点(代表行的称为白点,代表列的称为黑点),每个点$(x,y)$看做一条边。

Extend操作实际上就是$x_1$行与$y_1,y_2$列联通,$x_2$行与$y_1$列联通时,$x_2$行也跟$y_2$列联通。

同一个联通块里的一个黑点和一个白点会产生1的贡献,所以就是连边操作+查询每个联通块的(黑点个数*白点个数)之和,可以使用并查集维护。

现在考虑撤回操作,其实就相当于每条边在$[t_1,t_2]$这段时间里“有贡献”,考虑建一个关于时间的线段树,将$[t_1,t_2]$拆分为log个区间,然后将这条边加入这log个区间对应的边集中,表示在这个区间的范围中这条边“有贡献”。

然后对这个线段树进行dfs,每次dfs到一个区间$[l,r]$的时候,将这个区间对应的边集的边加入并查集,退出的时候把影响消除。

其实对于大部分非均摊时间的数据结构都是可以很快撤回的,并查集也是这样。所以不能使用路径压缩,要使用按秩合并。

时间复杂度$O(n\log^2n)$

 #include<bits/stdc++.h>
#define Rint register int
#define fi first
#define se second
#define mp make_pair
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int N = ;
int q, fa[N], siz[N][], top;
map<pii, int> ma;
vector<pii> vec[N << ];
LL ans, ansx[N];
inline int getfa(int x){
return x == fa[x] ? x : getfa(fa[x]);
}
pii que[N];
inline void comb(int x, int y){
x = getfa(x); y = getfa(y);
if(x == y) return;
if(siz[x][] + siz[x][] < siz[y][] + siz[y][]) swap(x, y);
ans += (LL) siz[x][] * siz[y][] + (LL) siz[x][] * siz[y][];
siz[x][] += siz[y][];
siz[x][] += siz[y][];
fa[y] = x;
que[++ top] = mp(x, y);
}
inline void undo(int x, int y){
fa[y] = y;
siz[x][] -= siz[y][];
siz[x][] -= siz[y][];
ans -= (LL) siz[x][] * siz[y][] + (LL) siz[x][] * siz[y][];
}
inline void update(int x, int L, int R, int l, int r, pii val){
if(l <= L && R <= r){
vec[x].push_back(val);
return;
}
int mid = L + R >> ;
if(l <= mid) update(x << , L, mid, l, r, val);
if(mid < r) update(x << | , mid + , R, l, r, val);
}
inline void dfs(int x, int L, int R){
int now = top;
for(pii tmp : vec[x])
comb(tmp.fi, tmp.se);
if(L == R) ansx[L] = ans;
else {
int mid = L + R >> ;
dfs(x << , L, mid); dfs(x << | , mid + , R);
}
while(top > now){
undo(que[top].fi, que[top].se); -- top;
}
}
int main(){
scanf("%d", &q);
for(Rint i = ;i <= q;i ++){
int x, y;
scanf("%d%d", &x, &y); y += 3e5;
if(!ma.count(mp(x, y))) ma[mp(x, y)] = i;
else {
update(, , q, ma[mp(x, y)], i - , mp(x, y));
ma.erase(mp(x, y));
}
}
for(auto it = ma.begin();it != ma.end();it ++)
update(, , q, it -> se, q, it -> fi);
for(Rint i = ;i <= 3e5;i ++) fa[i] = i, siz[i][] = ;
for(Rint i = 3e5 + ;i <= 6e5;i ++) fa[i] = i, siz[i][] = ;
dfs(, , q);
for(Rint i = ;i <= q;i ++) printf("%lld\n", ansx[i]);
}

CF1140F

CF1140F Extending Set of Points 【按时间分治,并查集】的更多相关文章

  1. Codeforces 1140F Extending Set of Points (线段树分治+并查集)

    这题有以下几个步骤 1.离线处理出每个点的作用范围 2.根据线段树得出作用范围 3.根据分治把每个范围内的点记录和处理 #include<bits/stdc++.h> using name ...

  2. 【CF576E】Painting Edges 线段树按时间分治+并查集

    [CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...

  3. BZOJ_4025_二分图_线段树按时间分治+并查集

    BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简 ...

  4. 2018.09.30 bzoj4025: 二分图(线段树分治+并查集)

    传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的 ...

  5. CF1140F - Extending Set of Points

    题意:对于点集S,定义函数F(S)为对S不断扩展到不能扩展时S的点数.一次扩展定义为如果有一个平行于坐标轴的矩形的三个点在S中,则第四个点加入S. 动态在S中加点删点,每次操作完后求F(S)的值. 解 ...

  6. BZOJ 4025: 二分图 [线段树CDQ分治 并查集]

    4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...

  7. BZOJ3237:[AHOI2013]连通图(线段树分治,并查集)

    Description Input Output Sample Input 4 5 1 2 2 3 3 4 4 1 2 4 3 1 5 2 2 3 2 1 2 Sample Output Connec ...

  8. 【CF603E】Pastoral Oddities cdq分治+并查集

    [CF603E]Pastoral Oddities 题意:有n个点,依次加入m条边权为$l_i$的无向边,每次加入后询问:当前图是否存在一个生成子图,满足所有点的度数都是奇数.如果有,输出这个生成子图 ...

  9. Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)

    题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内 ...

随机推荐

  1. MySql数据库 优化

    MySQL数据库优化方案 Mysql的优化,大体可以分为三部分:索引的优化,sql慢查询的优化,表的优化. 开启慢查询日志,可以让MySQL记录下查询超过指定时间的语句,通过定位分析性能的瓶颈,才能更 ...

  2. CAS 5.x搭建常见问题系列(3).Failure to find org.apereo.cas:cas-server-support-pm-jdbc:jar:5.1.9

    错误内容 cas overlay的pom.xml增加了cas-server-support-pm-jdbc.jary依赖后, 打包(mvn package)出现如下的报错 D:\casoverlay\ ...

  3. 转------深入理解--Java按值传递和按引用传递

    引言 最近刷牛客网上的题目时碰到不少有关Java按值传递和按引用传递的问题,这种题目就是坑呀,在做错了n次之后,查找了多方资料进行总结既可以让自己在总结中得到提高,又可以让其他人少走弯路.何乐而不为? ...

  4. 从零开始搭建自己的.NET Core Api框架-1目录

    https://www.cnblogs.com/RayWang/p/9216820.html 系列目录 一.  创建项目并集成swagger 1.1 创建 1.2 完善 二. 搭建项目整体架构 三. ...

  5. For... in 及 For… of 及 forEach

    For... in 及 For… of let arr = ["a","b"]; for (let a in arr) { console.log(a) // ...

  6. Java中程序、进程、线程的区别。

    程序.进程.线程的区别. 程序(program):是一个指令的集合.程序不能独立执行,只有被加载到内存中,系统为他分配资源后才能执行. 进程(process):一个执行中的程序称为进程. 进程是系统分 ...

  7. EF方式增加数据

             单条记录添加 第一种方式: public void AddRegion() { using(Northwind db = new Northwind()) { Region regi ...

  8. Computer Vision_33_SIFT:SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Image Processing and Analysis_15_Image Registration:HAIRIS: A Method for Automatic Image Registration Through Histogram-Based Image Segmentation——2011

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  10. springboot系列(一) Spring Boot浅谈(转载)

    首先申明一下本文是转载自https://blog.csdn.net/fly_zhyu/article/details/76407830: 1. Spring Boot是什么,解决哪些问题 1) Spr ...