E. Minimum spanning tree for each edge

题目连接:

http://www.codeforces.com/contest/609/problem/E

Description

Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.

For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).

The weight of the spanning tree is the sum of weights of all edges included in spanning tree.

Input

First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.

Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.

Output

Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.

The edges are numbered from 1 to m in order of their appearing in input.

Sample Input

5 7

1 2 3

1 3 1

1 4 5

2 3 2

2 5 3

3 4 2

4 5 4

Sample Output

9

8

11

8

8

8

9

Hint

题意

给你一个图,n点m边。对于每个边,问你包含这条边的最小生成树是多少。

题解:

先生成一个最小生成树,加入一条边,可能会产生一个环,那么求这个环的最小值即可,

这个用倍增就行,就和求次小生成树一模一样。

今天typora终于可以用搜狗输入法了,我发现终端打开都用不了搜狗输入法,真奇怪呀。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 400050
ll n,m;
ll dp[N],mm[N],fu[N][21],mx[N][21];
ll tot,last[N];
struct Edge
{
ll from,to,val,s;
bool operator < (const Edge&b)
{return val<b.val;}
}a[N],edges[N];
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
void AddEdge(ll x,ll y,ll z)
{
edges[++tot]=Edge{x,y,z,last[x]};
last[x]=tot;
}
ll gf(ll x,ll *f)
{
if (x==f[x])return x;
return f[x]=gf(f[x],f);
}
ll MST(Edge *edges)
{
static ll f[N]; static Edge a[N];
for(ll i=1;i<=m;i++)a[i]=edges[i];
ll num=0,sum=0;
sort(a+1,a+m+1);
for(ll i=1;i<=n;i++)f[i]=i;
for(ll i=1;i<=m;i++)
{
Edge e=a[i];//
ll fx=gf(e.from,f),fy=gf(e.to,f);
if (fx!=fy)//
{
f[fx]=fy;
num++;
sum+=e.val;
AddEdge(e.to,e.from,e.val);
AddEdge(e.from,e.to,e.val);
}
if (num==n-1)break;
}
return sum;
}
void dfs(ll x,ll pre)
{
dp[x]=dp[pre]+1;
fu[x][0]=pre;
for(ll i=last[x];i;i=edges[i].s)
{
Edge &e=edges[i];
if (e.to==pre)continue;
mx[e.to][0]=e.val;
dfs(e.to,x);
}
}
void init_ST(ll n)
{
mm[0]=-1;
for(ll i=1;i<=n;i++) mm[i]=(i&(i-1))==0?mm[i-1]+1:mm[i-1];
for(ll i=1;i<=20;i++)
for(ll j=1;j<=n;j++)
{
fu[j][i]=fu[fu[j][i-1]][i-1];
mx[j][i]=max(mx[j][i-1],mx[fu[j][i-1]][i-1]);
}
}
ll get_max(ll x,ll y)
{
ll ans=0;
if (dp[x]<dp[y])swap(x,y);
for(ll i=mm[dp[x]-dp[y]];i>=0;i--)
if (dp[fu[x][i]]>=dp[y])
{
ans=max(ans,mx[x][i]);
x=fu[x][i];
}
if (x==y)return ans;
for(ll i=mm[dp[x]-1];i>=0;i--)
if (fu[x][i]!=fu[y][i])
{
ans=max(ans,mx[x][i]);
ans=max(ans,mx[y][i]);
x=fu[x][i];
y=fu[y][i];
}
ans=max(ans,mx[x][0]);
ans=max(ans,mx[y][0]);
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
read(n); read(m);
for(ll i=1;i<=m;i++)
{
ll x,y,z;
read(x); read(y); read(z);
a[i]=Edge{x,y,z,0};
}
ll sum=MST(a);
dfs(1,0);
init_ST(n);
for(ll i=1;i<=m;i++)
{
ll ans=sum-get_max(a[i].from,a[i].to)+a[i].val;
printf("%lld\n",ans);
}
}

Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增的更多相关文章

  1. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  2. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  3. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  4. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  5. CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种

    题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...

  6. Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)

    题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...

  7. cf609E Minimum Spanning Tree For Each Edge (kruskal+倍增Lca)

    先kruskal求出一个最小生成树,然后对于每条非树边(a,b),从树上找a到b路径上最大的边,来把它替换掉,就是包含这条边的最小生成树 #include<bits/stdc++.h> # ...

  8. Minimum spanning tree for each edge(倍增LCA)

    https://vjudge.net/contest/320992#problem/J 暑期训练的题. 题意:给你一个n个点,m条边的无向图.对于每一条边,求包括该边的最小生成树. 思路:首先想到求一 ...

  9. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

随机推荐

  1. 转载像元素周期表一样的html5的标签图集

    转载请注明出处. HTML5标签集合

  2. Java 显示锁 之 重入锁 ReentrantLock(七)

    ReentrantLock 重入锁简介 重入锁 ReentrantLock,顾名思义,就是支持同一个线程对资源的重复加锁.另外,该锁还支持获取锁时的公平与非公平性的选择. 重入锁 ReentrantL ...

  3. 安装mongodb-window10版

    第一.下载mongodb 官方地址:https://www.mongodb.com/ 第二步mongodb安装 运行mongodb-win32-x86_64-2008plus-ssl-v3.4-lat ...

  4. 在SUSE LINUX中如何用命令行关闭防火墙?

    sudo /sbin/SuSEfirewall2 stop 因为系统重启防火墙会自动开启, 导致ssh远程无法登陆,但系统里是可以PING出.也可以上网. 所以需要永久性关闭系统自带的防火墙,命令如下 ...

  5. curl_setopt(ch, option, value)函数上传文件

    bool curl_setopt ( resource $ch , int $option , mixed $value ) 为给定的cURL会话句柄设置一个选项 详细介绍请到:http://www. ...

  6. R语言:实现SQL的join功能的函数

    library(dplyr) ribao <- full_join(ribao,result,by = '渠道',copy = T) ribao <- full_join(ribao,se ...

  7. HearthBuddy 突袭 rush

    https://hearthstone.gamepedia.com/Rush Rush is an ability allowing a minion to attack other minions ...

  8. koa 实现上传文件

    项目目录: 1.上传单个文件 思路: (1)获取上传文件,使用 const file = ctx.request.files.file (2)我们使用 fs.createReadStream 来读取文 ...

  9. redis数据类型及订阅操作

    Redis数据类型详解 Redis键/值介绍 Redis key值是二进制安全的,这意味着可以用任何二进制序列作为key值,从形如“foo”的简单字符串到一个JPG文件的内容都可以.空字符串也是有效k ...

  10. css清除浮动的几种方式,哪种最合适?

    细心的人可能发现了,写的导航条中存在一个问题,那就是使用了float之后,父级盒子的高度变为0了. 我们来写一个例子来看一下,创建一个父级div,并设置border属性,然后下边创建两个子元素span ...