Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge
题目连接:
http://www.codeforces.com/contest/609/problem/E
Description
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
Input
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Output
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
Sample Input
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
Sample Output
9
8
11
8
8
8
9
Hint
题意
给你一个图,n点m边。对于每个边,问你包含这条边的最小生成树是多少。
题解:
先生成一个最小生成树,加入一条边,可能会产生一个环,那么求这个环的最小值即可,
这个用倍增就行,就和求次小生成树一模一样。
今天typora终于可以用搜狗输入法了,我发现终端打开都用不了搜狗输入法,真奇怪呀。
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 400050
ll n,m;
ll dp[N],mm[N],fu[N][21],mx[N][21];
ll tot,last[N];
struct Edge
{
ll from,to,val,s;
bool operator < (const Edge&b)
{return val<b.val;}
}a[N],edges[N];
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
void AddEdge(ll x,ll y,ll z)
{
edges[++tot]=Edge{x,y,z,last[x]};
last[x]=tot;
}
ll gf(ll x,ll *f)
{
if (x==f[x])return x;
return f[x]=gf(f[x],f);
}
ll MST(Edge *edges)
{
static ll f[N]; static Edge a[N];
for(ll i=1;i<=m;i++)a[i]=edges[i];
ll num=0,sum=0;
sort(a+1,a+m+1);
for(ll i=1;i<=n;i++)f[i]=i;
for(ll i=1;i<=m;i++)
{
Edge e=a[i];//
ll fx=gf(e.from,f),fy=gf(e.to,f);
if (fx!=fy)//
{
f[fx]=fy;
num++;
sum+=e.val;
AddEdge(e.to,e.from,e.val);
AddEdge(e.from,e.to,e.val);
}
if (num==n-1)break;
}
return sum;
}
void dfs(ll x,ll pre)
{
dp[x]=dp[pre]+1;
fu[x][0]=pre;
for(ll i=last[x];i;i=edges[i].s)
{
Edge &e=edges[i];
if (e.to==pre)continue;
mx[e.to][0]=e.val;
dfs(e.to,x);
}
}
void init_ST(ll n)
{
mm[0]=-1;
for(ll i=1;i<=n;i++) mm[i]=(i&(i-1))==0?mm[i-1]+1:mm[i-1];
for(ll i=1;i<=20;i++)
for(ll j=1;j<=n;j++)
{
fu[j][i]=fu[fu[j][i-1]][i-1];
mx[j][i]=max(mx[j][i-1],mx[fu[j][i-1]][i-1]);
}
}
ll get_max(ll x,ll y)
{
ll ans=0;
if (dp[x]<dp[y])swap(x,y);
for(ll i=mm[dp[x]-dp[y]];i>=0;i--)
if (dp[fu[x][i]]>=dp[y])
{
ans=max(ans,mx[x][i]);
x=fu[x][i];
}
if (x==y)return ans;
for(ll i=mm[dp[x]-1];i>=0;i--)
if (fu[x][i]!=fu[y][i])
{
ans=max(ans,mx[x][i]);
ans=max(ans,mx[y][i]);
x=fu[x][i];
y=fu[y][i];
}
ans=max(ans,mx[x][0]);
ans=max(ans,mx[y][0]);
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
read(n); read(m);
for(ll i=1;i<=m;i++)
{
ll x,y,z;
read(x); read(y); read(z);
a[i]=Edge{x,y,z,0};
}
ll sum=MST(a);
dfs(1,0);
init_ST(n);
for(ll i=1;i<=m;i++)
{
ll ans=sum-get_max(a[i].from,a[i].to)+a[i].val;
printf("%lld\n",ans);
}
}
Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增的更多相关文章
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种
题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)
题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...
- cf609E Minimum Spanning Tree For Each Edge (kruskal+倍增Lca)
先kruskal求出一个最小生成树,然后对于每条非树边(a,b),从树上找a到b路径上最大的边,来把它替换掉,就是包含这条边的最小生成树 #include<bits/stdc++.h> # ...
- Minimum spanning tree for each edge(倍增LCA)
https://vjudge.net/contest/320992#problem/J 暑期训练的题. 题意:给你一个n个点,m条边的无向图.对于每一条边,求包括该边的最小生成树. 思路:首先想到求一 ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
随机推荐
- 「BZOJ 5010」「FJOI 2017」矩阵填数「状压DP」
题意 你有一个\(h\times w\)的棋盘,你需要在每个格子里填\([1, m]\)中的某个整数,且满足\(n\)个矩形限制:矩形的最大值为某定值.求方案数\(\bmod 10^9+7\) \(h ...
- 利用简单的有限状态机(FSM)来实现一个简单的LED流水灯
有限状态机,(英语:Finite-state machine, FSM),又称有限状态自动机,简称状态机,是表示有限个状态以及在这些状态之间的转移和动作等行为的数学模型. 有限状态机是指输出取决于过去 ...
- Atcoder ABC138
Atcoder ABC138 A .Red or Not 一道网速题. 大于3200输出原字符串,否则就输出red. #include<iostream> #include<cstd ...
- Java中boolean类型占用多少个字节?我说一个,面试官让我回家等通知
摘自:https://www.cnblogs.com/qiaogeli/p/12004962.html 程序员乔戈里 腾讯面试官问我Java中boolean类型占用多少个字节?我说一个,面试官让我回家 ...
- Android__adb 命令大全
ADB 即 Android Debug Bridge,Android调试桥.ADB工作方式比较特殊,采用监听Socket TCP 端口的方式让IDE和Qemu通讯,默认情况下adb会daemon相关的 ...
- Vue入门下
使用npm创建项目,系统会自动生成一些列文件. 以慕课网上的Travel项目来说,在生成的项目文件中存在src文件夹,这个文件夹也是平时在做项目的时候用的比较多的,其他的一些配置信息更改的频率较低. ...
- [MySql]MySql中外键设置 以及Java/MyBatis程序对存在外键关联无法删除的规避
在MySql设定两张表,其中product表的主键设定成orderTb表的外键,具体如下: 产品表: create table product(id INT(11) PRIMARY KEY,name ...
- 微信小程序之状态管理A
其实这个标题 不是很对 主要是最近小程序项目中 有这么一个状态 所有商品都共用一个商品详情页面 大概就是这样子 为了公司 保险起见,一些展示的内容已经处理 但是无伤大雅 就是这么两个按钮 左侧粉色 ...
- 性能分析 | Linux 内存占用分析
这篇博客主要介绍 linux 环境下,查看内存占用的两种方式:使用 ps,top等命令:查看/proc/[pid]/下的文件.文章简要介绍了命令的使用方法与一些参数意义,同时对/proc/[pid]/ ...
- hibernate中session的管理方式
package loaderman.c_session; import loaderman.b_second_cache.Dept; import loaderman.b_second_cache.E ...