LOJ#3046. 「ZJOI2019」语言

先orz zsy吧

有一个\(n\log^3n\)的做法是把树链剖分后,形成logn个区间,这些区间两两搭配可以获得一个矩形,求矩形面积并

然后就是对于一个点把树链的log个区间加进去然后线段树合并,这是\(n \log^2 n\)的

链并会形成一棵树,如果我们把经过某个点的链的端点按dfn序排序的话,相邻两项算一下距离,首尾两项再算一下,我们就可以获得链并的这棵树的边权和×2,由此可以求树上的点的个数

我们要求的就是经过每个点的链并-1的和,然后再除2

对于每个点,开一个线段树,如果有一条链\(s,t\)在\(s\)的线段树上的\(s\)位置+ 1,在\(t\)的线段树上\(t\)的位置+1,在\(t\)的线段树上进行相同的操作

每次看看这个位置累加的是不是正数,是正数证明这个点的链并有这个点

在\(lca\)的上方把这两个点的贡献删除即可

复杂度\(n \log n\)

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M;
struct node {
int to,next;
}E[MAXN * 2]; int head[MAXN],sumE;
int fa[MAXN],dep[MAXN],top[MAXN],siz[MAXN],dfn[MAXN],idx,line[MAXN];
int len[MAXN * 2],st[MAXN * 2][20],tot,pos[MAXN];
vector<int> del[MAXN];
int64 ans = 0;
int mindex(int a,int b) {return dep[a] < dep[b] ? a : b;}
int Query(int a,int b) {
int l = len[b - a + 1];
return mindex(st[a][l],st[b - (1 << l) + 1][l]);
}
int lca(int a,int b) {
int u = pos[a],v = pos[b];
if(u > v) swap(u,v);
return Query(u,v);
}
int dist(int a,int b) {
return dep[a] + dep[b] - 2 * dep[lca(a,b)];
}
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
void dfs(int u) {
dep[u] = dep[fa[u]] + 1;siz[u] = 1;dfn[u] = ++idx;line[idx] = u;
st[++tot][0] = u;pos[u] = tot;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa[u]) {
fa[v] = u;
dfs(v);
st[++tot][0] = u;
siz[u] += siz[v];
}
}
} struct tr_node {
int ls,rs,lp,rp,cnt;
int64 sum;
}tr[MAXN * 100];
int rt[MAXN],Ncnt = 0;
void update(int u) {
int lson = tr[u].ls,rson = tr[u].rs;
tr[u].rp = tr[rson].rp ? tr[rson].rp : tr[lson].rp;
tr[u].lp = tr[lson].lp ? tr[lson].lp : tr[rson].lp;
tr[u].sum = tr[lson].sum + tr[rson].sum;
if(tr[lson].rp && tr[rson].lp) tr[u].sum += dist(tr[lson].rp,tr[rson].lp);
}
void Add(int &u,int l,int r,int pos,int v) {
if(!u) u = ++Ncnt;
if(l == r) {
tr[u].cnt += v;
if(tr[u].cnt) {tr[u].lp = tr[u].rp = line[pos];tr[u].sum = 0;}
else {tr[u].lp = tr[u].rp = tr[u].sum = 0;}
return;
}
int mid = (l + r) >> 1;
if(pos <= mid) Add(tr[u].ls,l,mid,pos,v);
else if(pos > mid) Add(tr[u].rs,mid + 1,r,pos,v);
update(u);
}
int Merge(int u,int v,int l,int r) {
if(!u) return v;
if(!v) return u;
if(l == r) {
tr[u].cnt = tr[u].cnt + tr[v].cnt;
if(tr[u].cnt) {tr[u].lp = tr[u].rp = line[l];tr[u].sum = 0;}
else {tr[u].lp = tr[u].rp = tr[u].sum = 0;}
return u;
}
int mid = (l + r) >> 1;
tr[u].ls = Merge(tr[u].ls,tr[v].ls,l,mid);
tr[u].rs = Merge(tr[u].rs,tr[v].rs,mid + 1,r);
update(u);
return u;
}
void Calc(int u) {
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa[u]) {
Calc(v);
rt[u] = Merge(rt[u],rt[v],1,N);
}
}
for(auto t : del[u]) Add(rt[u],1,N,dfn[t],-2);
if(tr[rt[u]].lp && tr[rt[u]].rp) {
int64 res = tr[rt[u]].sum + dist(tr[rt[u]].lp,tr[rt[u]].rp);res /= 2;
ans += res;
}
}
void Solve() {
read(N);read(M);
int a,b;
for(int i = 1 ; i < N ; ++i) {
read(a);read(b);
add(a,b);add(b,a);
}
dfs(1);
for(int i = 2 ; i <= tot ; ++i) len[i] = len[i / 2] + 1;
for(int j = 1 ; j <= 19 ; ++j) {
for(int i = 1 ; i <= tot ; ++i) {
if(i + (1 << j) - 1 > tot) break;
st[i][j] = mindex(st[i][j - 1],st[i + (1 << j - 1)][j - 1]);
}
}
for(int i = 1 ; i <= M ; ++i) {
read(a);read(b);
Add(rt[a],1,N,dfn[a],1);Add(rt[a],1,N,dfn[b],1);
Add(rt[b],1,N,dfn[b],1);Add(rt[b],1,N,dfn[a],1);
int f = lca(a,b);
if(fa[f]) {del[fa[f]].pb(a);del[fa[f]].pb(b);}
}
Calc(1);
ans /= 2;
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}

【LOJ】#3046. 「ZJOI2019」语言的更多相关文章

  1. @loj - 3046@「ZJOI2019」语言

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 九条可怜是一个喜欢规律的女孩子.按照规律,第二题应该是一道和数据 ...

  2. 【线段树 树链剖分 差分 经典技巧】loj#3046. 「ZJOI2019」语言【未完】

    还是来致敬一下那过往吧 题目分析 先丢代码 #include<bits/stdc++.h> ; ; ; struct node { int top,son,fa,tot; }a[maxn] ...

  3. Loj #3044. 「ZJOI2019」Minimax 搜索

    Loj #3044. 「ZJOI2019」Minimax 搜索 题目描述 九条可怜是一个喜欢玩游戏的女孩子.为了增强自己的游戏水平,她想要用理论的武器武装自己.这道题和著名的 Minimax 搜索有关 ...

  4. Loj #3045. 「ZJOI2019」开关

    Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过 ...

  5. Loj #3042. 「ZJOI2019」麻将

    Loj #3042. 「ZJOI2019」麻将 题目描述 九条可怜是一个热爱打麻将的女孩子.因此她出了一道和麻将相关的题目,希望这题不会让你对麻将的热爱消失殆尽. 今天,可怜想要打麻将,但是她的朋友们 ...

  6. 「ZJOI2019」语言 解题报告

    「ZJOI2019」语言 3个\(\log\)做法比较简单,但是写起来还是有点麻烦的. 大概就是树剖把链划分为\(\log\)段,然后任意两段可以组成一个矩形,就是个矩形面积并,听说卡卡就过去了. 好 ...

  7. bzoj5518 & loj3046 「ZJOI2019」语言 线段树合并+树链的并

    题目传送门 https://loj.ac/problem/3046 题解 首先问题就是问有多少条路径是给定的几条路径中的一条的一个子段. 先考虑链的做法. 枚举右端点 \(i\),那么求出 \(j\) ...

  8. 「ZJOI2019」语言

    传送门 Description 给定一棵\(n\)个点的树和\(m\)条链,两个点可以联会当且仅当它们同在某一条链上,求可以联会的点的方案数 \(n,m\leq10^5\) Solution  考虑计 ...

  9. @loj - 3043@「ZJOI2019」线段树

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 九条可怜是一个喜欢数据结构的女孩子,在常见的数据结构中,可怜最喜 ...

随机推荐

  1. windows 安装python2.7

    下载:https://www.python.org/downloads/release/python-2716/ 安装即可. 设置环境变量 进入C:\Python27,修改python.exe 为py ...

  2. CF427D

    CF427D SA的奇技淫巧,其实就是板子. 题意: 给定两个字符串,求最短的满足各只出现一次的连续公共字串 解析: 一般情况下,SA都是用来求最长公共前缀的,好像和这道题所求的最短公共子串没有任何关 ...

  3. SSM整合(自己收藏)

    https://github.com/crossoverJie/SSM/blob/master/README-ZH.md

  4. app支付宝充值

    首先支付宝需要开通app 支付 然后登录支付宝 ,点击合作伙伴, 进入 开放平台,申请一个应用. 下载支付宝开放平台助手, 生成应用公钥,点击上传 设置进入之前申请的应用,支付宝自动生成支付宝公钥,设 ...

  5. Mybatis-Plus BaseMapper自动生成SQL及MapperProxy

    目录 Spring+Mybatis + Mybatis-Plus 自定义无XML的sql生成及MapperProxy代理生成 问题产生背景 框架是如何使用 无Xml的SQL是如何生成生成及SQL长成什 ...

  6. Qt那点事儿(三) 论父对象与子对象的关系

    第三回 父与子 70后的道友都应该看过这么一部片子叫做<<父子情深>>.讲述的是一个小男孩患了绝症,父亲为了满足他的愿望,让已关门的游乐园为他们父子俩重新开放.在游乐园尽情地玩 ...

  7. PHP 二维数组去重方法

    php二维数组的去重策略,如果需要根据某字段去重(其他字段可能不一致),那么需要使用循环策略,如果去重的都是相同的(字段,值),那么可以用序列化方式. $allComments = array_map ...

  8. adb、pm命令操作apk包

    1.adb shell pm list package 打印出来所有安装到手机上的APP包名 2.adb shell pm path com.xxx.xxx 找出安装后的包名应用的apk所在位置 3. ...

  9. 性能分析 | MySQL 的慢查分析实例

    最近遇见一个 MySQL 的慢查问题,于是排查了下,这里把相关的过程做个总结. 定位原因 我首先查看了 MySQL 的慢查询日志,发现有这样一条 query 耗时非常长(大概在 1 秒多),而且扫描的 ...

  10. 启动eclipse导致Tomcat的配置文件重置

    转: 启动eclipse导致Tomcat的配置文件重置 导入一个项目,需要在Tomcat的配置文件中配置JNDI数据源,需要修改Tomcat下的server.xml文件.但是当我们修改完后重启Tomc ...