POJ 1860 汇率 SPFA
题意
有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加 货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的 怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
对SPFA算法进行改造,原来的dis改为存的货币的数量,改为求最长路,如果有自环,那么dis会不断增加没有上限
if(money[v]<(money[u]-E[u][i].fee)*E[u][i].rate){
money[v]=(money[u]-E[u][i].fee)*E[u][i].rate;
if(!vis[v])
#define _CRT_SBCURE_NO_DEPRECATE
#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <bitset>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
#define ll long long
#define mm0(a) memset(a,0,sizeof(a))
#define mm(a,b) memset(a,b,sizeof(a))
#define each(a,b,c) for(int a=b;a<=c;a++)
#define de(x) cout << #x << " " << (x) <<endl
//#define de(x) cout <<""
#define rush() int T;scanf("%d",&T);each(kase,1,T)
#define scan(a,b) scanf("%d%d",&a,&b)
#define fin(a) scanf("%d",&a)
using namespace std;
const int maxn = 1e3+5;
const int INF = 0x3f3f3f3f;
inline int read(){int s=0;char ch=getchar();for(; ch<'0'||ch>'9'; ch=getchar());for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';return s;}
/*
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
*/
struct Edge{
int v;
double fee;
double rate;
Edge(int _v,double _fee,double _rate):v(_v),fee(_fee),rate(_rate){}
};
vector<Edge>E[maxn];
void addEdge(int u,int v,double fee,double rate)
{
E[u].push_back(Edge(v,fee,rate));
}
bool vis[maxn];
int cnt[maxn];
double money[maxn];
int n;
int m;
int start;
double init_money;
bool SPFA(int start,double init_money,int n)
{
memset(vis,false,sizeof(vis));//清空vis
for(int i=1;i<=n;i++)money[i]=0;
vis[start]=true;
money[start]=init_money;
queue<int>Q;
while(!Q.empty())Q.pop();
Q.push(start);
memset(cnt,0,sizeof(cnt));
cnt[start]=1;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
vis[u]=false;
for(int i=0;i<E[u].size();i++)
{
int v=E[u][i].v;
if(money[v]<(money[u]-E[u][i].fee)*E[u][i].rate){
money[v]=(money[u]-E[u][i].fee)*E[u][i].rate;
if(!vis[v])
{
vis[v]=true;
Q.push(v);
if(++cnt[v]>n)return false;
}
}
}
}
return true;
}
int main()
{
scanf("%d%d%d%lf",&n,&m,&start,&init_money);
each(i,1,m)
{
int a,b;
double rab,cab,rba,cba;
scan(a,b);
scanf("%lf%lf%lf%lf",&rab,&cab,&rba,&cba);
addEdge(a,b,cab,rab);
addEdge(b,a,cba,rba);
}
if(!SPFA(start,init_money,n))
cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
POJ 1860 汇率 SPFA的更多相关文章
- POJ 1860(spfa)
http://poj.org/problem?id=1860 题意:汇率转换,与之前的2240有点类似,不同的是那个题它去换钱的时候,是不需要手续费的,这个题是需要手续费的,这是个很大的不同. 思路: ...
- Currency Exchange POJ - 1860 (spfa判断正环)
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)
链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- poj - 1860 Currency Exchange Bellman-Ford 判断正环
Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...
- POJ 1860 Currency Exchange (Bellman-Ford)
题目链接:POJ 1860 Description Several currency exchange points are working in our city. Let us suppose t ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- ios编译库文件时出现的问题
1. 警告:directory not found for option "xxxxxxxx" 文件路径未找到 选择工程, 编译的 (targets) 选择 Build Setti ...
- Jenkins系统初始化配置
1.点击系统管理-->全局安全配置 2.设置允许用户注册,点击保存 3.配置全局工具 4.配置maven文件路径,使用文件系统中的settings文件 5.配置jdk 6.配置maven 7.我 ...
- 异步机制 - BindIoCompletionCallback
直接上代码 VOID CALLBACK test_io_completion_routine( DWORD dwErrorCode, DWORD dwNumberOfBytesTransfered, ...
- Web开发中 MTV模式与MVC模式的区别 联系 概念
MTV 与 MVC模式的区别 联系 概念: MTV: 所谓MTV指的就是: M:model (模型),指的是ORM模型. T:template (模板),一般Python都是使用模板渲染的方式来把HT ...
- VS Code文本编辑快捷操作(2)
1. 光标移动 移动光标最常用的就是方向键,但是方向键每次只能把光标移动一个位置,可以说是一种相对低效的方式.下面介绍针对单词.行.代码块.整个文档等多种光标移动方式. 1.1 ...
- embeddable persistent key-value store for fast storage
A persistent key-value store for fast storage environmentsRocksDB is an embeddable persistent key-va ...
- Linux设备驱动程序学习----目录
目录 设备驱动程序简介 1.设备驱动程序简介 构造和运行模块 2.内核模块和应用程序的对比 3.模块编译和装载 4.模块的内核符号表 5.模块初始化和关闭 6.模块参数 7.用户空间编写驱动程序 ...
- 数据分析 - Power BI
BI 目的 单表的展示有限很多的时候只能体现现象, 仅仅进行监控级别没问题 但是就数据分析而言实在不够用, 大部分的事情需要多表多图展示才可以通过现象深入挖掘诱因 BI 安装 这里使用 microso ...
- 【原创】smarty引擎下的导航按钮高亮实现
<?php$_nvaarr = array( array('name'=>'首页','url'=>'company.php?id='), array('name'=>'公司介绍 ...
- 12 Flutter仿京东商城项目 商品列表页面请求数据、封装Loading Widget、上拉分页加载更多
ProductList.dart import 'package:flutter/material.dart'; import '../services/ScreenAdaper.dart'; imp ...