UVA Tress in a Wood
https://vjudge.net/problem/UVA-10214
题意:给定一个坐标系。|x|<=a, |y|<=b 求坐标系中有多少点是可以从原点直接看到(即从原点和一个点连线,线段没有经过其他点就ok);
题解:由于是和原点连线,所以所有的点满足y=k*x;我们可以发现满足条件的点是坐标互素的点。用反证法证明,假设一个点的x,y左边不互素,即gcd(x,y)!=1,y=k*x,则必然存在一个点y0=y/g,x0=x/g 也满足y0=k*x0,而且x0,y0,势必相对于x,y而言更加靠近原点,所以x,y是不符合条件的。但是由于x,y的大小范围不一致,不好通过欧拉直接枚举怎么处理呢?gcd(n,m)=gcd(n+m,n) 这个东西就用上了
对于n 1~n中的x gcd(x,n)=1的个数为phi(n);
同样对于n 1+n~n+n中的x gcd(x,n)=1的个数与phi(n)一致!
这样我们就可以枚举范围小的值,然后多出来的部分单独处理
ac代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
typedef long long ll;
int phi[];
void init()
{
for(ll i=;i<=;i++) phi[i]=i;
for(ll i=;i<=;i++)
{
if(phi[i]==i)
{
for(ll j=i;j<=;j+=i)
{
phi[j]=phi[j]/i*(i-);
}
}
}
}
ll gcd(ll a,ll b)
{
if(b==) return a;
else return gcd(b,a%b);
}
int main()
{
ll a,b;
init();
while(cin>>a>>b)
{
if(a== && b==) break;
ll minn=min(a,b);
ll maxx=max(a,b);
ll sum=;
ll k;
for(ll i=;i<=minn;i++)
{
ll temp=phi[i];
ll ret=maxx/i;
temp*=ret;
for(ll j=;j<=maxx%i;j++)
{
if(gcd(j,i)==) temp++;
}
// cout<<temp<<endl;
sum+=temp;
}
sum=sum*+;
k=(*a+)*(*b+)-;
double fin=(sum*1.0)/(k*1.0);
printf("%.7lf\n",fin);
}
return ;
}
UVA Tress in a Wood的更多相关文章
- Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。
/** 题目:Trees in a Wood. UVA 10214 链接:https://vjudge.net/problem/UVA-10214 题意:给定a,b求 |x|<=a, |y|&l ...
- UVa 10214 - Trees in a Wood.(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- UVA 10214 Trees in a Wood
https://vjudge.net/problem/UVA-10214 题意:你站在原点,每个坐标位置有一棵高度相同的树,问能看到多少棵树 ans=Σ gcd(x,y)=1 欧拉函数搞搞 #incl ...
- UVA 10214 Trees in a Wood(欧拉函数)
题意:给你a.b(a<=2000,b<=2000000),问你从原点可以看到范围在(-a<=x<=a,-b<=y<=b)内整数点的个数 题解:首先只需要计算第一象限 ...
- UVa 10214 Trees in a Wood. (数论-欧拉函数)
题意:给定一个abs(x) <= a, abs(y) <= b,除了原点之外的整点各有一棵树,可以相互阻挡,求从原点可以看到多少棵树. 析:由于a < b,所以我们可以一列一列的统计 ...
- Trees in a Wood UVA - 10214 欧拉函数模板
太坑惹,,,没用longlong各种WA #include <iostream> #include <string.h> #include <cstdio> #in ...
- UVa 11729 - Commando War(贪心)
"Waiting for orders we held in the wood, word from the front never came By evening the sound of ...
- POJ 1873 UVA 811 The Fortified Forest (凸包 + 状态压缩枚举)
题目链接:UVA 811 Description Once upon a time, in a faraway land, there lived a king. This king owned a ...
随机推荐
- adb的一些命令
adb pull <手机路径> <本机路径> 从手机中拉取信息到本地电脑上 adb push <本机路径> <手机路径> 从本地电脑推送信息到手机上
- zip flags 1 and 8 are not supported解决方案
原因是因为使用了mac自带的软件打包成了zip,这种zip包unzip命令无法解压的. 所以解决方案就是使用zip命令进行压缩,zip -r 目标文件 源文件
- 【spring源码分析】IOC容器初始化——查漏补缺(三)
前言:本文分析InitializingBean和init-method方法,其实该知识点在AbstractAutowireCapableBeanFactory#initializeBean方法中有所提 ...
- lareval重命名created_at和updated_at字段
lareval重命名created_at和updated_at字段 一.总结 一句话总结: 要改变created_at和updated_at的名称,模型和数据迁移里面都需要改变 在模型中指定数据类型之 ...
- ArcGIS超级工具SPTOOLS-编号工具
1.1 整库更新BSM 输入一个MDB或GDB,将所有的要素类和表,按某个字段BSM,BSM不存在,会自动创建,从某个开始,顺序编号. 1.2 更新BSM 根据自己输入的多个表或要素,可以自己编号 ...
- Linux 下基础命令
Linux:开源 Ubuntu Centos Deepin Debian Linux mint ... 1.省钱 2.省资源 Linux由unix演化而来 Linux:开源 Unix: 闭源 sola ...
- Mac 上卸载node和npm
Mac 上卸载node和npm 卸载node依次在终端执行下面的脚本 sudo npm uninstall npm -gsudo rm -rf /usr/local/lib/node /usr/loc ...
- ROS 常用命令
1.查看网卡接口: /interface print 2.给网口添加IP地址: /ip address add address=192.168.1.254/24 interface=ether1 3 ...
- Vue学习笔记(三)组件间如何通信传递参数
一:父组件向子组件传递参数 <template > <div id="app"> <h1 v-text="title">&l ...
- 三小时攻克 Kubernetes!
我保证本文是最详尽的 Kubernetes 技术文档,从我在后台排版了这么漫长的时间就能看出来.废话不多说——牢牢占据容器技术统治地位的 Kubernetes,其重要性想必不言而喻. 以下为译文: 为 ...