我们使用决策树来创建一个能屏蔽网页横幅广告的软件。

已知图片的数据判断它属于广告还是文章内容。

数据来自 http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

其中包含3279张图片的数据,该数据集中的类的比例是不均衡的,459张图片是广告,零位2820张图片是文章内容。

首先导入数据,数据预处理

# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV df = pd.read_csv('ad-dataset/ad.data',header=None) variable_col = set(df.columns.values) #共有几列
variable_col.remove(len(df.columns.values)-1) #最后一列是标签
label_col= df[len(df.columns.values)-1] #把标签列取出来 y = [1 if e=='ad.' else 0 for e in label_col] #把标签转为数值
X = df[list(variable_col)].copy() #把前面的所有列作为X
X.replace(to_replace=' *?',value=-1,regex=True,inplace=True) #数据中的缺失值是 *?,我们用-1替换缺失值
X_train,X_test,y_train,y_test = train_test_split(X,y)

建立决策树,网格搜索微调模型

# In[1] 网格搜索微调模型
pipeline = Pipeline([
('clf',DecisionTreeClassifier(criterion='entropy'))
])
parameters={
'clf__max_depth':(150,155,160),
'clf__min_samples_split':(2,3),
'clf__min_samples_leaf':(1,2,3)
}
#GridSearchCV 用于系统地遍历多种参数组合,通过交叉验证确定最佳效果参数。
grid_search = GridSearchCV(pipeline,parameters,n_jobs=-1,verbose=-1,scoring='f1')
grid_search.fit(X_train,y_train) # 获取搜索到的最优参数
best_parameters = grid_search.best_estimator_.get_params()
print("最好的F1值为:",grid_search.best_score_)
print('最好的参数为:')
for param_name in sorted(parameters.keys()):
print('t%s: %r' % (param_name,best_parameters[param_name]))
最好的F1值为: 0.8753026365252053
最好的参数为:
tclf__max_depth: 160
tclf__min_samples_leaf: 1
tclf__min_samples_split: 3

评价模型

# In[2] 输出预测结果并评价
predictions = grid_search.predict(X_test)
print(classification_report(y_test,predictions))
              precision    recall  f1-score   support

           0       0.98      0.99      0.98       695
1 0.93 0.89 0.91 125 micro avg 0.97 0.97 0.97 820
macro avg 0.95 0.94 0.94 820
weighted avg 0.97 0.97 0.97 820

scikit-learn机器学习(四)使用决策树做分类的更多相关文章

  1. scikit-learn机器学习(四)使用决策树做分类,并画出决策树,随机森林对比

    数据来自 UCI 数据集 匹马印第安人糖尿病数据集 载入数据 # -*- coding: utf-8 -*- import pandas as pd import matplotlib matplot ...

  2. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  3. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  4. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  5. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  6. Python机器学习笔记 使用sklearn做特征工程和数据挖掘

    特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处 ...

  7. 基于机器学习和TFIDF的情感分类算法,详解自然语言处理

    摘要:这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM.RF.LR.Boosting)对比 本文分享自华为云社区<[Python人工智能] ...

  8. javascript实现朴素贝叶斯分类与决策树ID3分类

    今年毕业时的毕设是有关大数据及机器学习的题目.因为那个时间已经步入前端的行业自然选择使用JavaScript来实现其中具体的算法.虽然JavaScript不是做大数据处理的最佳语言,相比还没有优势,但 ...

  9. CART决策树(分类回归树)分析及应用建模

    一.CART决策树模型概述(Classification And Regression Trees)   决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节 ...

随机推荐

  1. Spark(三)角色和搭建

    目录 Spark(三)角色和搭建 一.Spark集群角色介绍 二.集群的搭建 三.history服务 四.使用spark-submit进行计算Pi 五.Spark On Yarn 六.shell脚本 ...

  2. mongodb的基本操作之数据删除

    删除操作使用remove进行,数据的删除与查询类似,接受一个参数,与查询不同的是,为了防止误操作,删除操作不允许不传参数 比如 db.test_collection.remove() 会报错 Erro ...

  3. Pytest命令行执行测试

    Pytest命令行执行测试 from collections import namedtuple Task = namedtuple('Task', ['summary','owner','done' ...

  4. SQL SERVER 查询第20行到30之间的数据

    1.先查询前20行的ID,后查询除去20条记录的前10条记录 SELECT TOP * FROM tbBank WHERE BankID NOT IN(SELECT TOP BankID FROM t ...

  5. LINQ to Entities不识别C#语法报错

    错误:报错不识别string.Join…… var QueryWithStandard=from a in listA join b in listB on a.ID equals b.AID int ...

  6. JQuery实践--Ajax

    Ajax概览无需刷新用户页面而发起服务器请求的技术.创建一个XHR实例:    var xhr    if(window.XMLHttpRequest) {         xhr = new XML ...

  7. P4148 简单题 k-d tree

    思路:\(k-d\ tree\) 提交:2次 错因:整棵树重构时的严重错误:没有维护父子关系(之前写的是假重构所以没有维护父子关系) 题解: 遇到一个新的点就插进去,如果之前出现过就把权值加上. 代码 ...

  8. percona-toolkit 主从工具 master-slave

    复制类 pt-heartbeat 监控mysql复制延迟   pt-slave-delay 设定从落后主的时间   pt-slave-find 查找和打印所有mysql复制层级关系   pt-slav ...

  9. 事务日志已满 请参阅sys.databases中的log_reuse_wait_desc列解决办法

    http://www.myexception.cn/sql-server/153219.html http://blog.csdn.net/kedingboy12345/article/details ...

  10. [USACO5.5] 矩形周长Picture

    https://www.luogu.org/problemnew/show/P1856 1.每个矩形由两条横向边和两条纵向边组成. 2.对于横向边,按纵坐标排序.设当前讨论的边为 A [s , t] ...