20151007kaggle Titanic心得
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难。目前抽工作之余,断断续续弄了点,成绩为0.79426。
在这个比赛过程中,接触并了解了一些数据挖掘比赛的基本流程,现记录一下。
1. 分析数据
- 因为数据量比较小,train有800多条数据,test有400多条数据,因此这里用了execl的数据透视表分析。
- 同时python提供pandas库,可以很好的分析数据。
2. 缺失值填充
关于Age,Fare,Embarked三个字段有缺失,官方给了个利用中位数或者众数的做法,同样的我们也可以利用随机森林等机器学习模型来填补缺失值。当然这里我采用的官方的做法,效果不错。
##利用众数填充Embarked缺失值
prodata.Embarked[ prodata.Embarked.isnull() ] = prodata.Embarked.dropna().mode().values
##利用中位数填充Age缺失值
median_age = prodata['Age'].dropna().median()
prodata.loc[ (prodata.Age.isnull()), 'Age'] = median_age
##根据Pclass将人分成3组,然后利用每组的中位数填充Fare缺失值
median_fare = numpy.zeros(3)
for f in range(0,3):
median_fare[f] = prodata[prodata.Pclass == f+1 ]['Fare'].dropna().median()
for f in range(0,3):
prodata.loc[ (prodata.Fare.isnull()) & (prodata.Pclass == f+1 ), 'Fare'] = median_fare[f]
3. 数据处理
3.1 转换为虚拟变量
数据中常常有无法比较大小的值,比如Embarked代表去哪个地方,这个时候如果要使用lr这类的模型,我们需要将Embarked变为虚拟变量,也是哑变量。
举个例子:Embarked这里取得3种值,假设为A、B、C。这里我们就可以用2个新特征标识Embarked,分别是Embarked_A、Embarked_B。
Embarked = “A” => Embarked_A = 1 Embarked_B = 0
Embarked = “B” => Embarked_A = 0 Embarked_B = 1
Embarked = “C” => Embarked_A = 0 Embarked_B = 0
这里不能再添加一个新的特征Embarked_C,原因是如果在添加一个特征会使得特征完全共线性,导致模型无法估计。具体详细见虚拟变量陷阱。
##将Embarked转换为哑变量
dummies_df = pandas.get_dummies(prodata.Embarked)
dummies_df = dummies_df.rename(columns=lambda x:'Embarked_'+str(x))
prodata = pandas.concat([prodata,dummies_df.iloc[:,:-1]],axis=1)
3.2 归一化
归一化的方法有很多,比如线性函数归一化,Z-score标准化。后者要求原始数据分布为正态分布。
##标准化归一化Age
prodata['Age_Scaled'] = preprocessing.StandardScaler().fit_transform(prodata.Age)
3.3 离散化(分区间)
将数值类的数据划分成几个区间,这里采用的分位数划分pandas.qcut。
##将Age分成6个区间,然后变化成区间id
Age_bin = pandas.qcut(prodata.Age, 6)
prodata['Age_bin_id'] = pandas.factorize(Age_bin)[0]+1
3.4 数据平滑
因为Fare这一列有一些为0的数据,因此对等于0的部分,稍微做一些平滑处理。
##平滑处理Fare为0的数据
prodata['Fare'][numpy.where(prodata['Fare']==0)[0]] = prodata['Fare'][prodata.Fare.nonzero()[0] ].min() / 100
4. 提炼高级特征
- 参照了别人的博客,从Name里面提炼了一些Mr,Mrs等特征,然后转换成哑变量。
- 对一些特征进行加减乘除,在下一步降维,以及特征筛选的时候使用。
5. 降维以及特征筛选
5.1 PCA降维
参照博客,对lr使用了PCA降维,但是效果并不好。
X = prodata.values[:, 1::]
y = prodata.values[:, 0]
variance_pct = .99
pca = PCA(n_components=variance_pct)
X_transformed = pca.fit_transform(X,y)
pcaDataFrame = pandas.DataFrame(X_transformed)
5.2 特征筛选
针对如此多的特征,这里可以根据随机森林在训练之后产生的一个特征重要性来筛选特征。
forest = forest.fit( train_data[0::,1::], train_data[0::,0] )
feature_importance = forest.feature_importances_
feature_importance = 100.0 * (feature_importance / feature_importance.max())
fi_threshold = 10
important_idx = numpy.where(feature_importance > fi_threshold)[0]
important_features = prodata[''][important_idx]
print "\n", important_features.shape[0], "Important features(>", \
fi_threshold, "% of max importance)...\n"#, \
important_features
sorted_idx = numpy.argsort(feature_importance[important_idx])[::-1]
get the figure about important features
pos = numpy.arange(sorted_idx.shape[0]) + .5
plt.subplot(1, 2, 2)
plt.title('Feature Importance')
plt.barh(pos, feature_importance[important_idx][sorted_idx[::-1]], \
color='r',align='center')
plt.yticks(pos, important_features[sorted_idx[::-1]])
plt.xlabel('Relative Importance')
plt.draw()
plt.show()
train_df = train_df.iloc[:, important_idx].iloc[:, sorted_idx].values
test_df = test_df.iloc[:,important_idx
6. 交叉验证
sklearn自带有cross_validation,可以进行交叉验证。具体的cross_validation用法参考:Cross-validation: evaluating estimator performance。
cross_validation.cross_val_score(lr,train_data[0::,1::],train_data[0::,0],cv=5,scoring='precision')
7. 参考资料:
- 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化: http://www.cnblogs.com/chaosimple/p/4153167.html
- kaggle数据挖掘竞赛初步:
http://www.cnblogs.com/north-north/p/4353365.html
http://www.cnblogs.com/north-north/p/4354775.html
http://www.cnblogs.com/north-north/p/4358084.html
http://www.cnblogs.com/north-north/p/4360121.html - Kaggle系列——Titanic 80%+精确度纪录:http://blog.csdn.net/yobobobo/article/details/48194021
- wiki 哑变量:https://en.m.wikipedia.org/wiki/Dummy_variable_%28statistics%29
- PCA:http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
- scikit-learn中PCA的使用方法: http://blog.csdn.net/u012162613/article/details/42192293
- 干货:结合Scikit-learn介绍几种常用的特征选择方法:http://dataunion.org/14072.html?utm_source=tuicool
- Cross-validation: evaluating estimator performance:http://scikit-learn.org/stable/modules/cross_validation.html
20151007kaggle Titanic心得的更多相关文章
- kaggle Titanic心得
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...
- kaggle入门项目:Titanic存亡预测(二)数据处理
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...
- kaggle入门项目:Titanic存亡预测 (一)比赛简介
自从入了数据挖掘的坑,就在不停的看视频刷书,但是总觉得实在太过抽象,在结束了coursera上Andrew Ng 教授的机器学习课程还有刷完一整本集体智慧编程后更加迷茫了,所以需要一个实践项目来扎实之 ...
- 我的MYSQL学习心得(一) 简单语法
我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据类型 我的MYSQL学习心得(五) 运 ...
- NoSql数据库使用半年后在设计上面的一些心得
NoSql数据库这个概念听闻许久了,也陆续看到很多公司和产品都在使用,优缺点似乎都被分析的清清楚楚.但我心里一直存有一个疑惑,它的出现究竟是为了解决什么问题? 这个疑惑非常大,为此我看了很多分析文章, ...
- 我的MYSQL学习心得(二) 数据类型宽度
我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据类型 我的MYSQL学习心得(五) 运 ...
- 我的MYSQL学习心得(三) 查看字段长度
我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(四) 数据类型 我的MYSQL学习心得(五) 运 ...
- 我的MYSQL学习心得(四) 数据类型
我的MYSQL学习心得(四) 数据类型 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(五) 运 ...
- 我的MYSQL学习心得(五) 运算符
我的MYSQL学习心得(五) 运算符 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据 ...
随机推荐
- Android 内存相关 onTrimMemory,onLowMemory,MemoryInfo()
参考: Android Application生命周期学习 Android中如何查看内存(上) Android OnLowMemory和OnTrimMemory OnLowMemory OnLowMe ...
- Server Profiler
Server Profiler 2014-10-31 工作原理 SQL Server Profiler这个工具是SQL Trace的一个GUI的版本,而SQL Trace是一组脚本,自SQL Serv ...
- emplace_back减少内存拷贝和移动
--------<深入应用C++11:代码优化与工程级应用>第2章使用C++11改进程序性能,本章将分别介绍右值引用相关的新特性.本节为大家介绍emplace_back减少内存拷贝和移动. ...
- 谈谈Perforce
实习就要结束了,收获之一就是学会了使用Perforce! Perforce SCM System是一款构建于可伸缩客户/服务器结构之上的软件配置管理工具.仅仅应用 TCP/IP,开发人员就能够通过多种 ...
- asp.net webpage
一.服务器脚本基础介绍 首先,我们先复习一下Web服务器页面的基本执行方式: 1. 客户端通过在浏览器的地址栏敲入地址来发送请求到服务器端 2. 服务器接收到请求之后,发给相应的服务器端页面(也就是脚 ...
- (转)ios获取设备系统信息
UIDevice *device_=[[UIDevice alloc] init]; NSLog(@"设备所有者的名称--%@",device_.name); NSLog(@&qu ...
- 物联网操作系统HelloX已成功移植到MinnowBoard MAX开发板上
在HelloX开发团队的努力下,以及Winzent Tech公司(总部在瑞典斯德哥尔摩)的支持下,HelloX最新版本V1.78已成功移植到MinnowBoard MAX开发板上.相关源代码已经发布到 ...
- UPDATE语句中使用JOIN
举个例子~ UPDATE e SET e.money = e.money + d.amount FROM employee e INNER JOIN ( GROUP BY empid) d ON d. ...
- 【英文】Bingo口语笔记(18) - Cover系列
cover charge 服务费 cover version 翻唱版本 cover the news 头条新闻
- 【英语】Bingo口语笔记(20) - i长短音
短音有个ei的音,多练习下 长音是咦拉长