Codeforces Educational Codeforces Round 15 E - Analysis of Pathes in Functional Graph
2 seconds
512 megabytes
standard input
standard output
You are given a functional graph. It is a directed graph, in which from each vertex goes exactly one arc. The vertices are numerated from 0 to n - 1.
Graph is given as the array f0, f1, ..., fn - 1, where fi — the number of vertex to which goes the only arc from the vertex i. Besides you are given array with weights of the arcs w0, w1, ..., wn - 1, where wi — the arc weight from i to fi.
The graph from the first sample test.
Also you are given the integer k (the length of the path) and you need to find for each vertex two numbers si and mi, where:
- si — the sum of the weights of all arcs of the path with length equals to k which starts from the vertex i;
- mi — the minimal weight from all arcs on the path with length k which starts from the vertex i.
The length of the path is the number of arcs on this path.
The first line contains two integers n, k (1 ≤ n ≤ 105, 1 ≤ k ≤ 1010). The second line contains the sequence f0, f1, ..., fn - 1 (0 ≤ fi < n) and the third — the sequence w0, w1, ..., wn - 1 (0 ≤ wi ≤ 108).
Print n lines, the pair of integers si, mi in each line.
7 3
1 2 3 4 3 2 6
6 3 1 4 2 2 3
10 1
8 1
7 1
10 2
8 2
7 1
9 3
4 4
0 1 2 3
0 1 2 3
0 0
4 1
8 2
12 3
5 3
1 2 3 4 0
4 1 2 14 3
7 1
17 1
19 2
21 3
8 1 题目链接:http://codeforces.com/contest/702/problem/E
#include<bits/stdc++.h>
#define ll long long
#define FOR(i,a,b) for(i=a;i<=b;i++)
using namespace std;
ll f[][],sum,w[][],s[][];
int main() { ll i,j,k,x,m,n;
cin>>n>>k;
FOR(i,,n-)
cin>>f[i][];
FOR(i,,n-)
{
cin>>w[i][];
s[i][]=w[i][];
}
FOR(j,,)
FOR(i,,n-)
{
f[i][j]=f[f[i][j-]][j-];
w[i][j]=min(w[i][j-],w[f[i][j-]][j-]);
s[i][j]=s[i][j-]+s[f[i][j-]][j-];
} FOR(i,,n-)
{
m=w[i][];
x=i;
sum=;
FOR(j,,)
{
if(k&1LL<<j)
{
sum+=s[x][j];
m=min(m,w[x][j]);
x=f[x][j];
}
}
cout<<sum<<" "<<m<<endl;
}
return ;
}
Codeforces Educational Codeforces Round 15 E - Analysis of Pathes in Functional Graph的更多相关文章
- codeforces 702E Analysis of Pathes in Functional Graph 倍增
题目链接 给一个图, 然后给出每条边的权值和一个k值. 让你求出从每个点出发, 走k次能获得的边权的和以及边权的最小值. 用倍增的思想, 求出每个点走一次能到达的点, 权值和以及最小值, 走两次..四 ...
- CodeForces 702E Analysis of Pathes in Functional Graph
倍增预处理. 先看一下这张图的结构,因为出度都是$1$,所以路径是唯一的,又因为每个点都有出度,所以必然有环,也就是一直可以走下去. 接下来我们需要记录一些值便于询问: 设$t[i][j]$表示从$i ...
- codeforce 702E Analysis of Pathes in Functional Graph RMQ+二进制
http://codeforces.com/contest/702 题意:n个点,n条边,每个点出边只有一条,问从每个点出发经过k条边的边权和,以及边权最小值 思路: f[i][j] 第i个点出发,经 ...
- CF702E Analysis of Pathes in Functional Graph
倍增练习题. 基环树上倍增一下维护维护最小值和权值和,注意循环的时候$j$这维作为状态要放在外层循环,平时在树上做的时候一个一个结点处理并不会错,因为之前访问的结点已经全部处理过了. 时间复杂度$O( ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Codeforces Educational Codeforces Round 15 C. Cellular Network
C. Cellular Network time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Educational Codeforces Round 15 A. Maximum Increase
A. Maximum Increase time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Educational Codeforces Round 15 D. Road to Post Office
D. Road to Post Office time limit per test 1 second memory limit per test 256 megabytes input standa ...
随机推荐
- Java面试汇总
转自:http://zy19982004.iteye.com/blog/1846537#comments 一.All 最近找工作,遇到的笔试面试题,归纳如下,供大家参考. 二.J2SE 容器 Hash ...
- 无法创建链接服务器 "(null)" 的 OLE DB 访问接口 "Microsoft.Ace.OLEDB.12.0" 的实例。
--开启导入功能 exec sp_configure 'show advanced options',1 reconfigure exec sp_configure 'Ad Hoc ...
- cdoj 1342 郭大侠与甲铁城 树状数组+离线
郭大侠与甲铁城 Time Limit: 1500/800MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submit St ...
- Codeforces Beta Round #97 (Div. 1)
B 判矩阵的时候 出了点错 根据点积判垂直 叉积判平行 面积不能为0 #include <iostream> #include<cstdio> #include<cstr ...
- .NET 实现异步处理的集中方式
对于异步,相信大家都不十分陌生.准确点来说就是方法执行后立即返回,待到执行完毕会进行通知.就是当一个任务在执行的时候,尤其是需要耗费很长的时间进行处理的任务,如果利用单线程进行操作的话,势必造成界面的 ...
- 使用Jenkins构建持续集成环境
简介 Jenkins是一个开源的持续集成工具,提供了数百种插件供用户选择,能够完成整套持续集成环境的构建. 它具有如下的特点: 持续集成和持续发布 作为可扩展的自动服务器,Jenkins可以作为简单的 ...
- HDU 3068 (Manacher) 最长回文
求一个字符串的最长子串,Manacher算法是一种O(n)的算法,很给力! s2[0] = '$',是避免在循环中对数组越界的检查. 老大的代码: http://www.cnblogs.com/Big ...
- spring tx:advice 和 aop:config 配置事务
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- 【英语】Bingo口语笔记(21) - 表达“请客吃饭”
- 模拟实现死亡之Ping(Ping of death)
需求描述 使用hping构造IP分片,模拟实现死亡之Ping 环境搭建 使用VMWare和Dynamips. 实现思路 构造重装后大于65535字节的IP分片 hping 192.168.1.1 -1 ...