ECCV-2010 Tutorial: Feature Learning for Image Classification

Organizers

Kai Yu (NEC Laboratories America, kyu@sv.nec-labs.com),

Andrew Ng (Stanford University, ang@cs.stanford.edu)

Place & Time: Creta Maris Hotel, Crete, Greece, 9:00 – 13:00, September 5th, 2010

Course Material and Software

The quality of visual features is crucial for a wide range of computer vision topics, e.g., scene classification, object recognition, and object detection, which are very popular in recent computer vision venues. All these image classification tasks have traditionally relied on hand-crafted features to try to capture the essence of different visual patterns. Fundamentally, a long-term goal in AI research is to build intelligent systems that can automatically learn meaningful feature representations from a massive amount of image data. We believe a comprehensive coverage of the latest advances on image feature learning will be of broad interest to ECCV attendees.

The primary objective of this tutorial is to introduce a paradigm of feature learning from unlabeled images, with an emphasis on applications to supervised image classification. We provide a comprehensive coverage of recently developed algorithms for learning powerful sparse nonlinear features, and showcase their superior performance on a number of challenging image classification benchmarks, including Caltech101, PASCAL, and the recent large-scale problem ImageNet. Furthermore, we describe deep learning and a variety of deep learning algorithms, which learn rich feature hierarchies from unlabeled data and can capture complex invariance in visual patterns.

Syllabus

  • Overview: Image Classification Overview
  • Part I: State-of-the-art Image Classification Methods
    • Discriminative Classifiers using BoW Representation and Spatial Pyramid Matching
    • Alternative Methods: Generative Models and Part-based Models
  • Part II: Image Classification using Sparse Coding
    • Self-taught Learning
    • BoW Representation from a Coding Perspective
    • Feature Learning using Sparse Coding
    • Alternative Sparse Coding Methods: Sparse RBM, Sparse Autoencoder, etc.
  • Part III: Advanced Topics on Image Classification using Sparse Coding
    • Intuitions, Topic-model View, and Geometric View
    • Local Coordinate Coding: Theory and Applications
    • Recent Advances in Sparse Coding for Image Classification
  • Part IV: Learning Feature Hierarchies and Deep Learning
    • Feature Hierarchies and the Importance of Depth
    • Deep Belief Networks (DBNs) and Convolution DBNs
    • Learning Invariance (ICA, SFA, etc.)
    • Other Deep Architectures
    • Application to Image Classification
  • Open questions and discussion

Course Material and Software

The slides:

Software available online:

  • Matlab toolbox for sparse coding using the feature-sign algorithm [link]
  • Matlab codes for image classification using sparse coding on SIFT features [link]
  • Matlab codes for a fast approximation to Local Coordinate Coding [link]

Relevant Tutorials

Biographies

Kai Yu is a Department Head at NEC Labs America, where he leads the research in image understanding, video surveillance, and data mining. He served as Session Chair at ICML 2009 and Area Chair at ICML 2010, and received the best paper runner-up award in PKDD-05. His team won the Winner Prizes in PASCAL VOC Challenge 2009 and the ImageNet Large-scale Visual Recognition Challenge 2010, and was among the top performers in TRECVID Video Event Detection Evaluations in 2008 and 2009. He received Ph.D in CS from University of Munich, Germany, in 2004.

Andrew Ng is an Associate Professor of Computer Science at Stanford University. His research interests include machine learning, robotics, and broad-competence AI. His group has won best paper/best student paper awards at ACL, CEAS, 3DRR and ICML. He is also a recipient of the Alfred P. Sloan Fellowship, and the IJCAI 2009 Computers and Thought award.

from: http://ufldl.stanford.edu/eccv10-tutorial/

图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification的更多相关文章

  1. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  2. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

  3. 译:Local Spectral Graph Convolution for Point Set Feature Learning-用于点集特征学习的局部谱图卷积

    标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem ...

  4. [转] 无监督特征学习——Unsupervised feature learning and deep learning

    from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio ...

  5. 利用K-means聚类分类,进行特征学习

    这只是老师安排的一个实验,准备过程中遇到各种问题,现在贴出来供大家参考,是Andrew Ng参与的研究, 论文依据如下,第二篇是一篇相关的论文, Learning Feature Representa ...

  6. Deep Learning 学习随记(四)自学习和非监督特征学习

    接着看讲义,接下来这章应该是Self-Taught Learning and Unsupervised Feature Learning. 含义: 从字面上不难理解其意思.这里的self-taught ...

  7. Deep Learning论文笔记之(一)K-means特征学习

    Deep Learning论文笔记之(一)K-means特征学习 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感 ...

  8. UFLDL深度学习笔记 (三)无监督特征学习

    UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...

  9. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

随机推荐

  1. xml基础学习笔记03

    继续上篇xml学习笔记,坚持.坚持.再坚持啊.... 本篇主要记录: 35.XML节点的删除与修改 36集.用XML制作RSS订阅源 <?php /* 笔记: 35.XML节点的删除与修改 使用 ...

  2. 【Exception】 java.lang.NoSuchMethodError: android.app.AlertDialog$Builder.setOnDismissListener

    f(Build.VERSION.SDK_INT >10) builder =newAlertDialog.Builder(getActivity(), R.style.Theme.Sherloc ...

  3. android 开发 对图片编码,并生成gif图片

    demo场景: 将2张静态的png格式图片组合生成一个gif图片,间隔500毫秒,关键类:AnimatedGifEncoder 如需要解析gif获取每帧的图片,可参考上一篇博客:<android ...

  4. 如何在Android模拟器上安装apk文件

    1.运行SDK Manager,选择模拟器,并运行模拟器 SDK Manager应用 2.将需要安装的apk文件复制到platform-tools目录下(默认在:D:\tools\android\ad ...

  5. OS X 使用技巧——在Finder窗口标题栏上显示路径

    Finder窗口默认显示当前文件夹的名称或当前所在的模式(例如AirDrop).如果想要显示路径(用User/[当前用户账号名称]/Documents 替代以前显示的Documents),打开终端并运 ...

  6. Facebook 和 Google 如何激发工程师的创造力

    原文链接:http://kb.cnblogs.com/page/193450/ 今天终于“朝圣”了两个伟大的公司——Facebook和Google,对创造力和驱动力的来源有了更多的理解,尤其是对于典型 ...

  7. Noip模拟考第三题——饥饿游戏

    饥饿游戏 (hungry.pas/c/cpp) [问题描述] Chanxer饿了,但是囊中羞涩,于是他去参加号称免费吃到饱的“饥饿游戏”. 这个游戏的规则是这样的,举办者会摆出一排 个食物,希望你能够 ...

  8. Java获取项目中的路径 分类: Java Game 2014-08-14 10:17 122人阅读 评论(0) 收藏

    在项目中经常需要获取某个文件的路径: 在这里提供一些获取路径的方法.. 1.此种方式获取的路径,是当前类所在的路径: UserDAOTest.class.getResource("UserD ...

  9. Git 局域网简单配置

    Git核心:http://code.google.com/p/msysgit/downloads/list?q=full+installer+official+gitTortoiseGit :http ...

  10. Sencha Touch 2.4 callParent() 用法

    callParent() 用法 方法介绍 用来调用父类的同名方法,并传参,这在从一个框架类派生且要重写诸如onRender这样的方法时会经常看到. 传参方式 1.arguments Ext.defin ...