Dancing Links用来解决如下精确匹配的问题:

选择若干行使得每一列恰好有一个1。Dancing Links通过对非零元素建立双向十字循环链表。上面的例子建立的链表如下所示:

计算的时候使用搜索的策略。每次选出1最少的一列,比如c,然后选择这一列中的某一行,比如r,(r,c)=1,然后r中所有1所在的列,那些其他行这些列有1的都删掉(这些行不会在r算入答案后也在答案里,否则就有某些列多于一个1出现)。然后这就变成一个规模更小的问题,继续搜索。无解时要回溯。

 class CDancingLinks
{
protected:
struct DancingLinksNode
{
DancingLinksNode* left;
DancingLinksNode* right;
DancingLinksNode* down;
DancingLinksNode* up;
int col;
int row;
}; typedef DancingLinksNode Node; int *m_columnEleNumbers;
int m_colNumber;
int m_rowNumber;
Node* m_pool;
Node** m_head;
int m_curUsePoolIndex; void _Remove(Node* cur)
{
--m_columnEleNumbers[cur->col];
for(Node* p=cur->down;p!=cur;p=p->down)
{
p->left->right=p->right;
p->right->left=p->left;
}
} void _Resume(Node* cur)
{
++m_columnEleNumbers[cur->col];
for(Node* p=cur->up;p!=cur;p=p->up)
{
p->left->right=p;
p->right->left=p;
}
} bool _SearchSolution(const int depth,std::vector<int> &solution)
{
Node* p=_GetNode();
if(p->left==p) return true; int Min=m_rowNumber+;
int MinColumnIndex=;
for(Node* q=p->left;q!=p;q=q->left)
{
if(m_columnEleNumbers[q->col]<Min)
{
Min=m_columnEleNumbers[q->col];
MinColumnIndex=q->col;
}
} for(Node* q=_GetNode(MinColumnIndex)->down;q!=_GetNode(MinColumnIndex);q=q->down)
{
_Remove(q);
solution.push_back(q->row);
for(Node* rr=q->right;rr!=q;rr=rr->right) _Remove(rr);
if(_SearchSolution(depth+,solution)) return true;
for(Node* rr=q->left;rr!=q;rr=rr->left) _Resume(rr);
solution.pop_back();
_Resume(q);
} return false;
} Node* _GetNode(int id) { return m_pool+id; } void _ReleaseMemory()
{
if(m_columnEleNumbers)
{
delete[] m_columnEleNumbers;
m_columnEleNumbers=nullptr;
} if(m_pool)
{
delete[] m_pool;
m_pool=nullptr;
}
if(m_head)
{
delete[] m_head;
m_head=nullptr;
}
} public: CDancingLinks():m_colNumber(-),m_rowNumber(-),
m_columnEleNumbers(nullptr),m_pool(nullptr),m_head(nullptr) {} /***
列下标为[1,Column]
***/
CDancingLinks(const int Column,const int Row):
m_columnEleNumbers(nullptr),m_pool(nullptr),m_head(nullptr)
{
SetSize(Column,Row);
} /***
列下标为[1,Column]
***/
void SetSize(const int Column,const int Row)
{
m_colNumber=Column;
m_rowNumber=Row; _ReleaseMemory(); m_columnEleNumbers=new int[m_colNumber+];
m_pool=new Node[m_colNumber*(m_rowNumber+)+];
m_head=new Node*[m_rowNumber+];
Clear();
} void Clear()
{
for(int i=;i<=m_colNumber;++i)
{
Node* cur=_GetNode(i);
cur->left=((i==m_colNumber)?_GetNode():_GetNode(i+));
cur->right=((==i)?_GetNode(m_colNumber):_GetNode(i-));
m_columnEleNumbers[i]=; cur->up=cur->down=_GetNode(i);
cur->col=i;
cur->row=;
}
for(int i=;i<=m_rowNumber;++i) m_head[i]=NULL;
m_curUsePoolIndex=m_colNumber+;
} ~CDancingLinks()
{
_ReleaseMemory();
} void AddElement(const int row,const int col)
{ Node* cur=m_pool+(m_curUsePoolIndex++); cur->up=_GetNode(col);
cur->down=_GetNode(col)->down;
m_pool[col].down->up=cur;
m_pool[col].down=cur; if(m_head[row]==NULL)
{
m_head[row]=cur->left=cur->right=cur;
}
else
{
cur->left=m_head[row]->left;
cur->right=m_head[row];
m_head[row]->left->right=cur;
m_head[row]->left=cur;
}
++m_columnEleNumbers[col];
cur->col=col;
cur->row=row;
} bool GetSolution(std::vector<int> &Solution)
{
return _SearchSolution(,Solution);
}
};

Dancing Links的更多相关文章

  1. Dancing Links and Exact Cover

    1. Exact Cover Problem DLX是用来解决精确覆盖问题行之有效的算法. 在讲解DLX之前,我们先了解一下什么是精确覆盖问题(Exact Cover Problem)? 1.1 Po ...

  2. 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题

    精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合 ...

  3. ZOJ 3209 Treasure Map (Dancing Links)

    Treasure Map Time Limit: 2 Seconds      Memory Limit: 32768 KB Your boss once had got many copies of ...

  4. HUST 1017 - Exact cover (Dancing Links 模板题)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...

  5. Dancing Links初学记

    记得原来备战OI的时候,WCX大神就研究过Dancing Links算法并写了一篇blog.后来我还写了个搜索策略的小文章( http://www.cnblogs.com/pdev/p/3952279 ...

  6. 【转】Dancing Links题集

    转自:http://blog.csdn.net/shahdza/article/details/7986037 POJ3740 Easy Finding [精确覆盖基础题]HUST1017 Exact ...

  7. 【转】Dancing Links精确覆盖问题

    原文链接:http://sqybi.com/works/dlxcn/ (只转载过来一部分,全文请看原文,感觉讲得很好~)正文    精确覆盖问题    解决精确覆盖问题    舞蹈步骤    效率分析 ...

  8. POJ 3074 Sudoku (Dancing Links)

    传送门:http://poj.org/problem?id=3074 DLX 数独的9*9的模板题. 具体建模详见下面这篇论文.其中9*9的数独怎么转化到精确覆盖问题,以及相关矩阵行列的定义都在下文中 ...

  9. HDU5046 Airport dancing links 重复覆盖+二分

    这一道题和HDU2295是一样 是一个dancing links重复覆盖解决最小支配集的问题 在给定长度下求一个最小支配集,只要小于k就行 然后就是二分答案,每次求最小支配集 只不过HDU2295是浮 ...

随机推荐

  1. mongo导出导入

    导出例子: mongoexport -d test -c test -q '{sn:1}' -o test.dat 导入例子: mongoimport -d test -c students stud ...

  2. PAT乙级 1020. 月饼 (25)(只得到23分)

    1020. 月饼 (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 月饼是中国人在中秋佳节时吃的一种传统食 ...

  3. 1. 星际争霸之php面向对象(一)

    题记==============================================================================本php设计模式专辑来源于博客(jymo ...

  4. windows下gvim与gcc的一键环境的搭建

    此处略去在windows中配置gcc的方法.默认你已经能够在命令提示符下直接使用gcc了. 其实就是写了一个vimscript的.vim文件,然后在 _vimrc 中使用source命令引用进来. 以 ...

  5. ubuntu android环境配置

    1.下载eclipse 2.下载sdk 3.安装adt 4.配置sdk环境路径sudo gedit /etc/profile export PATH=$JAVA_HOME/bin:$JAVA_HOME ...

  6. NOIP200301乒乓球

    NOIP200301乒乓球 [问题背景] 国际乒联现在主席沙拉拉自从上任以来就立志于推行一系列改革,以推动乒乓球运动在全球的普及.其中11分制改革引起了很大的争议,有一部分球 员因为无法适应新规则只能 ...

  7. 锋利的JQuery(六)

    $.ajax():可以设定beforeSend.error.success.complete等 $.getScript():加载JS文件 $.getJSON():加载JSON文件 $.each():通 ...

  8. 【python cookbook】【数据结构与算法】16.筛选序列中的元素

    问题:提取出序列中的值或者根据某些标准对序列做删减 解决方案:列表推导式.生成器表达式.使用内建的filter()函数 1.列表推导式方法:存在一个潜在的缺点,如果输入数据非常大可能会产生一个庞大的结 ...

  9. TI CC254x BLE教程 4

    TI的CC254x芯片 1. SoC 2. RF收发器+8051MCU 128/256KB Code空间. 3. Master或者Slave 4. 可编程flash 5. 8KB SRAM 6. 全软 ...

  10. 在keil 4中添加stc系列芯片的方法--【sky原创】

    在keil 4中添加stc系列芯片的方法: 1.从官网下载uv3.cdb的文件网址是:http://www.stcmcu.com/ 2.下载好后把uv3.cdb文件改成STC.cdb:3. 然后将[S ...