Dancing Links
Dancing Links用来解决如下精确匹配的问题:
选择若干行使得每一列恰好有一个1。Dancing Links通过对非零元素建立双向十字循环链表。上面的例子建立的链表如下所示:
计算的时候使用搜索的策略。每次选出1最少的一列,比如c,然后选择这一列中的某一行,比如r,(r,c)=1,然后r中所有1所在的列,那些其他行这些列有1的都删掉(这些行不会在r算入答案后也在答案里,否则就有某些列多于一个1出现)。然后这就变成一个规模更小的问题,继续搜索。无解时要回溯。
class CDancingLinks
{
protected:
struct DancingLinksNode
{
DancingLinksNode* left;
DancingLinksNode* right;
DancingLinksNode* down;
DancingLinksNode* up;
int col;
int row;
}; typedef DancingLinksNode Node; int *m_columnEleNumbers;
int m_colNumber;
int m_rowNumber;
Node* m_pool;
Node** m_head;
int m_curUsePoolIndex; void _Remove(Node* cur)
{
--m_columnEleNumbers[cur->col];
for(Node* p=cur->down;p!=cur;p=p->down)
{
p->left->right=p->right;
p->right->left=p->left;
}
} void _Resume(Node* cur)
{
++m_columnEleNumbers[cur->col];
for(Node* p=cur->up;p!=cur;p=p->up)
{
p->left->right=p;
p->right->left=p;
}
} bool _SearchSolution(const int depth,std::vector<int> &solution)
{
Node* p=_GetNode();
if(p->left==p) return true; int Min=m_rowNumber+;
int MinColumnIndex=;
for(Node* q=p->left;q!=p;q=q->left)
{
if(m_columnEleNumbers[q->col]<Min)
{
Min=m_columnEleNumbers[q->col];
MinColumnIndex=q->col;
}
} for(Node* q=_GetNode(MinColumnIndex)->down;q!=_GetNode(MinColumnIndex);q=q->down)
{
_Remove(q);
solution.push_back(q->row);
for(Node* rr=q->right;rr!=q;rr=rr->right) _Remove(rr);
if(_SearchSolution(depth+,solution)) return true;
for(Node* rr=q->left;rr!=q;rr=rr->left) _Resume(rr);
solution.pop_back();
_Resume(q);
} return false;
} Node* _GetNode(int id) { return m_pool+id; } void _ReleaseMemory()
{
if(m_columnEleNumbers)
{
delete[] m_columnEleNumbers;
m_columnEleNumbers=nullptr;
} if(m_pool)
{
delete[] m_pool;
m_pool=nullptr;
}
if(m_head)
{
delete[] m_head;
m_head=nullptr;
}
} public: CDancingLinks():m_colNumber(-),m_rowNumber(-),
m_columnEleNumbers(nullptr),m_pool(nullptr),m_head(nullptr) {} /***
列下标为[1,Column]
***/
CDancingLinks(const int Column,const int Row):
m_columnEleNumbers(nullptr),m_pool(nullptr),m_head(nullptr)
{
SetSize(Column,Row);
} /***
列下标为[1,Column]
***/
void SetSize(const int Column,const int Row)
{
m_colNumber=Column;
m_rowNumber=Row; _ReleaseMemory(); m_columnEleNumbers=new int[m_colNumber+];
m_pool=new Node[m_colNumber*(m_rowNumber+)+];
m_head=new Node*[m_rowNumber+];
Clear();
} void Clear()
{
for(int i=;i<=m_colNumber;++i)
{
Node* cur=_GetNode(i);
cur->left=((i==m_colNumber)?_GetNode():_GetNode(i+));
cur->right=((==i)?_GetNode(m_colNumber):_GetNode(i-));
m_columnEleNumbers[i]=; cur->up=cur->down=_GetNode(i);
cur->col=i;
cur->row=;
}
for(int i=;i<=m_rowNumber;++i) m_head[i]=NULL;
m_curUsePoolIndex=m_colNumber+;
} ~CDancingLinks()
{
_ReleaseMemory();
} void AddElement(const int row,const int col)
{ Node* cur=m_pool+(m_curUsePoolIndex++); cur->up=_GetNode(col);
cur->down=_GetNode(col)->down;
m_pool[col].down->up=cur;
m_pool[col].down=cur; if(m_head[row]==NULL)
{
m_head[row]=cur->left=cur->right=cur;
}
else
{
cur->left=m_head[row]->left;
cur->right=m_head[row];
m_head[row]->left->right=cur;
m_head[row]->left=cur;
}
++m_columnEleNumbers[col];
cur->col=col;
cur->row=row;
} bool GetSolution(std::vector<int> &Solution)
{
return _SearchSolution(,Solution);
}
};
Dancing Links的更多相关文章
- Dancing Links and Exact Cover
1. Exact Cover Problem DLX是用来解决精确覆盖问题行之有效的算法. 在讲解DLX之前,我们先了解一下什么是精确覆盖问题(Exact Cover Problem)? 1.1 Po ...
- 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题
精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合 ...
- ZOJ 3209 Treasure Map (Dancing Links)
Treasure Map Time Limit: 2 Seconds Memory Limit: 32768 KB Your boss once had got many copies of ...
- HUST 1017 - Exact cover (Dancing Links 模板题)
1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...
- Dancing Links初学记
记得原来备战OI的时候,WCX大神就研究过Dancing Links算法并写了一篇blog.后来我还写了个搜索策略的小文章( http://www.cnblogs.com/pdev/p/3952279 ...
- 【转】Dancing Links题集
转自:http://blog.csdn.net/shahdza/article/details/7986037 POJ3740 Easy Finding [精确覆盖基础题]HUST1017 Exact ...
- 【转】Dancing Links精确覆盖问题
原文链接:http://sqybi.com/works/dlxcn/ (只转载过来一部分,全文请看原文,感觉讲得很好~)正文 精确覆盖问题 解决精确覆盖问题 舞蹈步骤 效率分析 ...
- POJ 3074 Sudoku (Dancing Links)
传送门:http://poj.org/problem?id=3074 DLX 数独的9*9的模板题. 具体建模详见下面这篇论文.其中9*9的数独怎么转化到精确覆盖问题,以及相关矩阵行列的定义都在下文中 ...
- HDU5046 Airport dancing links 重复覆盖+二分
这一道题和HDU2295是一样 是一个dancing links重复覆盖解决最小支配集的问题 在给定长度下求一个最小支配集,只要小于k就行 然后就是二分答案,每次求最小支配集 只不过HDU2295是浮 ...
随机推荐
- IE和FF区别关于css和js
css 1.ul标签FF中有padding值,没有margin,IE中相反 解决办法:将ul的padding和margin都设为0, js 1.IE中innerText在火狐中没有,使用textCon ...
- 真实的C++单例模式举例
把构造函数声明为protected的理由很简单,但把构造函数声明为private的原因却很少知道. 从语法上讲,任何函数如果被声明为private,这个函数就不能从外部调用,构造函数也是函数,相反 ...
- Spring MVC 和 Spring 总结
1. 为什么使用Spring ? 1). 方便解耦,简化开发 通过Spring提供的IoC容器,可以将对象之间的依赖关系交由Spring进行控制,避免硬编码所造成的过度程序耦合. 2). AOP编程的 ...
- ubuntu支持shh远程连接记录
打开终端输入sudo apt-get update更新软件库 在输入sudo apt-get install openssh-server下载ssh sudo /etc/init.d/ssh rest ...
- 关于 ActiveMQ 的消息模式
1.JMS Queue 执行 load balancer语义:一条消息仅能被一个 consumer(消费者) 收到.如果在 message 发送的时候没有可用的consumer,那么它将被保存一直到能 ...
- 一个基于和围绕Docker生态环境构建的早期项目列表
https://blog.docker.com/2013/07/docker-projects-from-the-docker-community/
- dir cmd、the DIR Command、windows
原因 :如何在windows下的cmd.exe中只列出文件名? solve : dir \a:-d \b Extend Reading : dir [drive:][path][filename] ...
- SpringMVC整合TaskExecutor线程池的配置/使用
一.配置jdbc.properties添加: #------------ Task ------------ task.core_pool_size=5 task.max_pool_size=50 t ...
- 鸟哥的linux私房菜---非常好的linux基础网址【转】
转自:http://linux.vbird.org/linux_basic/0320bash.php 在 Linux 的環境下,如果你不懂 bash 是什麼,那麼其他的東西就不用學了!因為前面幾章我們 ...
- Oracle主库归档丢失,备库日志有gap,在不重建备库的情况下,恢复备库
本文主要描述Oracle备库日志与主库日志之间有gap,切主库这部分gap的归档日志已经删除或丢失,如何在不重建备库的情况下,恢复备库. 欢迎转载,请注明作者.出处. 作者:张正 blog:http: ...