hdu 3908 Triple(组合计数、容斥原理)
Triple
Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) Total Submission(s): 1365 Accepted Submission(s): 549
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
int item[maxn];
int gcd(int a,int b)
{
if(b==)return a;
return gcd(b,a%b);
}
int main()
{
int cas,n;
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",item+i);
int ans=;
for(int i=;i<n;i++)
{
int numa=,numb=;
for(int j=;j<n;j++)
{
if(i!=j)
{
if(gcd(item[i],item[j])==)numa++;
else numb++;
}
}
ans+=numa*numb;
}
printf("%d\n",(n*(n-)*(n-)/)-ans/);
}
return ;
}
hdu 3908 Triple(组合计数、容斥原理)的更多相关文章
- 集训队8月9日(组合计数+容斥原理+Mobius函数)
刷题数:4 今天看了组合计数+容斥原理+Mobius函数,算法竞赛进阶指南169~179页 组合计数 https://www.cnblogs.com/2462478392Lee/p/11328938. ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
- UVa 11806 - Cheerleaders (组合计数+容斥原理)
<训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- HDU4609 FFT+组合计数
HDU4609 FFT+组合计数 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 找出n根木棍中取出三根木棍可以组成三角形的概率 题解: ...
- ACM组合计数入门
1 排列组合 1.1 排列 \[A_n^m=n(n-1)(n-2)\cdots(n-m+1)=\frac{n!}{(n-m)!} \] 定义:从 n 个中选择 m 个组成有序数列,其中不同数列的数量. ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
随机推荐
- 动态加载JS
<script> Date.prototype.format = function(format) { var o = { , //month "d+" : this. ...
- js parseInt();parseFloat;Number()
1: parseInt( numString [, radix ] ) [测试浏览器:chromium && firefox] ①parseInt()函数用于将字符串转换为(十进制) ...
- JQuery中Ajax的Post提交中文乱码的解决方案
出自:http://m.blog.csdn.net/blog/blueheart20/26370023 引言: 在JQuery的Ajax POST请求中,进行请求,其中的中文在后台,显示为乱码,该如何 ...
- sql 执行计划
SQL Server执行计划的理解 要理解执行计划,怎么也得先理解,那各种各样的名词吧.鉴于自己还不是很了解.本文打算作为只写懂的,不懂的懂了才写. 在开头要先说明,第一次看执行计划要注意,SQL S ...
- 获取Token不完整问题
有时会遇到获取Token只能获取一半的问题,明明有两个Cookie,但只获取到一个,这个是因为301重定向跳转设置问题,设置为True就可以获取到完整的Token了. myHttpWebRequest ...
- iOS - OC NSSet 集合
前言 NSSet:集合 @interface NSSet<__covariant ObjectType> : NSObject <NSCopying, NSMutableCopyin ...
- CentOS7_RAID5_LVM_SAMBA
1.在CentOS 7上构建RAID5.LVM和SAMBA服务器(1)——预备http://blog.csdn.net/kingfox/article/details/51099617 2.在Cent ...
- hdu4588Count The Carries
链接 去年南京邀请赛的水题,当时找规律过的,看它长得很像数位dp,试了试用数位dp能不能过,d出每位上有多少个1,然后TLE了..然后用规律优化了前4位,勉强过了. 附数位dp代码及找规律代码. #i ...
- iOS 开发之照片框架详解(3)
http://kayosite.com/ios-development-and-detail-of-photo-framework-part-three.html 三. 常用方法的封装 虽然 Phot ...
- 【Linux日志】系统日志及分析
Linux系统拥有非常灵活和强大的日志功能,可以保存几乎所有的操作记录,并可以从中检索出我们需要的信息. 大部分Linux发行版默认的日志守护进程为 syslog,位于 /etc/syslog 或 / ...