转自:http://www.cnblogs.com/eyeszjwang/articles/2368087.html

  MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值。主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。MAP 是反映系统在全部相关文档上性能的单值指标。系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如果系统没有返回相关文档,则准确率默认为0。
  例如:假设有两个主题,主题1有4个相关网页,主题2有5个相关网页。某系统对于主题1检索出4个相关网页,其rank分别为1, 2, 4, 7;对于主题2检索出3个相关网页,其rank分别为1,3,5。对于主题1,平均准确率为(1/1+2/2+3/4+4/7)/4=0.83。对于主题2,平均准确率为(1/1+2/3+3/5+0+0)/5=0.45。则MAP= (0.83+0.45)/2=0.64。”

  NDCG(Normalized Discounted Cumulative Gain):计算相对复杂。对于排在结位置n处的NDCG的计算公式如下图所示:

在MAP中,四个文档和query要么相关,要么不相关,也就是相关度非0即1。NDCG中改进了下,相关度分成从0到r的r+1的等级(r可设定)。当取r=5时,等级设定如下图所示:

  例如现在有一个query={abc},返回下图左列的Ranked List(URL),当假设用户的选择与排序结果无关(即每一级都等概率被选中),则生成的累计增益值如下图最右列所示:

  考虑到一般情况下用户会优先点选排在前面的搜索结果,所以应该引入一个折算因子(discounting factor): log(2)/log(1+rank)。这时将获得DCG值(Discounted Cumulative Gain)如下如所示:

  最后,为了使不同等级上的搜索结果的得分值容易比较,需要将DCG值归一化的到NDCG值。操作如下图所示,首先计算理想返回结果List的DCG值:

然后用DCG/MaxDCG就得到NDCG值,如下图所示:

  MRR(Mean Reciprocal Rank):是把标准答案在被评价系统给出结果中的排序取倒数作为它的准确度,再对所有的问题取平均。相对简单,举个例子:有3个query如下图所示:

  可计算这个系统的MRR值为:(1/3 + 1/2 + 1)/3 = 11/18=0.61。

(转)Learning to Rank for IR的评价指标—MAP,NDCG,MRR的更多相关文章

  1. Learning to Rank for IR的评价指标—MAP,NDCG,MRR

    转自: https://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是 ...

  2. IR的评价指标—MAP,NDCG,MRR

    http://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文 ...

  3. IR的评价指标-MAP,NDCG和MRR

    IR的评价指标-MAP,NDCG和MRR   MAP(Mean Average Precision): 单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值.主集合的平均准确率(MAP)是每个主 ...

  4. Learning to Rank算法介绍:RankSVM 和 IR SVM

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

  5. [Machine Learning] Learning to rank算法简介

    声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...

  6. Learning To Rank之LambdaMART前世今生

    1.       前言 我们知道排序在非常多应用场景中属于一个非常核心的模块.最直接的应用就是搜索引擎.当用户提交一个query.搜索引擎会召回非常多文档,然后依据文档与query以及用户的相关程度对 ...

  7. [笔记]Learning to Rank算法介绍:RankNet,LambdaRank,LambdaMart

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

  8. 芝麻HTTP: Learning to Rank概述

    Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出 ...

  9. Learning to Rank算法介绍:RankNet,LambdaRank,LambdaMart

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

随机推荐

  1. java 复习

    整型: byte 1 short 2 int 4 long 80b1001 1_233_32 1341414141414Ljava 没有无符号类型浮点型:float 4 double 812.2f 无 ...

  2. 使用shell从DB2数据库导出数据

    使用shell脚本根据输入的用户名,数据库名,密码从DB2数据库导出数据 (1)a.sh脚本如下 #!/usr/bin/bash read -p "please input your DBN ...

  3. Go语言类型switch

    switch还可以用于判断变量类型.使用方式为T.(type),即在变量后加上.(type).见代码: package main import ( "fmt" ) func mai ...

  4. IOS内存管理「4」- ARC 和垃圾回收机制的基本概念

  5. phpstorm自动对齐数组=>,自动加空格

    写完代码后可以点菜单中code-reformat code,快捷键是option+command+L

  6. php读取xml文件内容,并循环写入mysql数据库

    <?php $dbconn = mysql_connect("localhost","root","root"); $db = mys ...

  7. homework-07 C++ 11 能好怎

    大二时候学过c++,但是那只是为了考试在学习,大作业也就写了一个读写者线程同步的模拟,连一个完整的类都没有写过,所以我必须承认对c++了解的很少. 对于C++ 11这一新标准,我首先阅读了来自前C++ ...

  8. 二、secureCRT的 使用过程

    准备工作: win7与linux能互相ping通 linux安装了ssh被登陆服务 关闭window 防火墙,,控制面板 下载secureCRT 参考资料:http://zhidao.baidu.co ...

  9. urllib3 PoolManager

    A pool manager is an abstraction for a collection of ConnectionPools.If you need to make requests to ...

  10. P1572: [Usaco2009 Open]工作安排Job

    做这道题走了不少弯路,其实本身也是很简单的,类似单调队列的东西.刚开始以为双关键字排序就行了,结果连WA两遍,忽然意识到可以在截止之前做这件事!!于是就规规矩矩的打队列,然而忘记找队列里的最小P做,当 ...