定义:

  B-树是一种平衡的多路查找树,在文件系统中有所应用。主要用作文件的索引。

特性:(M为层数)

  1.定义任意非叶子结点最多只有M个儿子;且M>2;
  2.根结点儿子数为[2, M];
  3.除根结点以外的非叶子结点儿子数为[M/2, M];
  4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字,根节点至少一个关键字);
  5.非叶子结点的关键字个数=指向儿子指针个数-1;
  6.非叶子结点关键字:K[1], K[2], …, K[m-1],m<M+1;且K[i]< K[i+1] ;
  7.非叶子结点指针:P[1], P[2], …, P[m];其中P[1]指向关键字小于K[1]的子树,P[m]指向关键字大于K[m-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  8.所有叶子结点位于同一层;
 
时间复杂度:(M为设定的非叶子结点最多子树个数,N为关键字总数)
   
 
基本操作:
     1.B-树的插入操作(重点判断是否满足n<=m-1)
    a.利用前述的B-树的查找算法查找关键字的插入位置。若找到,则说明该关键字已经存在,直接返回。否则查找操作必失败于某个最低层的非终端结点上。

  b.判断该结点是否还有空位置。即判断该结点的关键字总数是否满足n<=m-1。若满足,则说明该结点还有空位置,直接把关键字k插入到该结点的合适位置上。若不满足,说明该结点己没有空位置,需要把结点分裂成两个。 

    分裂的方法是:生成一新结点。把原结点上的关键字和k按升序排序后,从中间位置把关键字(不包括中间位置的关键字)分成两部分。左部分所含关键字放在旧结点中,右部分所含关键字放在新结点中,中间位置的关键字连同新结点的存储位置插入到父结点中。如果父结点的关键字个数也超过(m-1),则要再分裂,再往上插。直至这个过程传到根结点为止。

  (2)B-树的删除操作(重点判断删除所在结点及其兄弟结点,父结点中n>ceil(m/2)-1,n=ceil(m/2)-1,n<ceil(m/2)-1)

      方法:在B-树上删除关键字K的过程也可以分为两步完成

      a.利用前述的B-树的查找算法找出该关键字所在的结点。然后根据 k所在结点是否为叶子结点有不同的处理方法。

      b.若该结点为非叶结点,且被删关键字为该结点中第i个关键字key[i],则可从指针son[i]所指的子树中找出最小关键字Y,代替key[i]的位置,然后在叶结点中删去Y。因此,把在非叶结点删除关键字k的问题就变成了删除叶子结点中的关键字的问题了。

    在B-树叶结点上删除一个关键字的方法是

      首先将要删除的关键字 k直接从该叶子结点中删除。然后根据不同情况分别作相应的处理,共有三种可能情况:

      a.如果被删关键字所在结点的原关键字个数n>=ceil(m/2),说明删去该关键字后该结点仍满足B-树的定义。这种情况最为简单,只需从该结点中直接删去关键字即可。

      b.如果被删关键字所在结点的关键字个数n等于ceil(m/2)-1,说明删去该关键字后该结点将不满足B-树的定义,需要调整。

     调整过程为:如果其左右兄弟结点中有“多余”的关键字,即与该结点相邻的右(左)兄弟结点中的关键字数目大于ceil(m/2)-1。则可将右(左)兄弟结点中最小(大)关键字上移至双亲结点。而将双亲结点中小(大)于该上移关键字的关键字下移至被删关键字所在结点中

      c.如果左右兄弟结点中没有“多余”的关键字,即与该结点相邻的右(左)兄弟结点中的关键字数目均等于ceil(m/2)-1。这种情况比较复杂。需把要删除关键字的结点与其左(或右)兄弟结点以及双亲结点中分割二者的关键字合并成一个结点,即在删除关键字后,该结点中剩余的关键字加指针,加上双亲结点中的关键字Ki一起合并到Ai(即双亲结点指向该删除关键字结点的左(右)兄弟结点的指针)所指的兄弟结点中去。如果因此使双亲结点中关键字个数小于ceil(m/2)-1,则对此双亲结点做同样处理。以致于可能直到对根结点做这样的处理而使整个树减少一层。

    总之,设所删关键字为非终端结点中的Ki,则可以指针Ai所指子树中的最小关键字Y代替Ki,然后在相应结点中删除Y。对任意关键字的删除都可以转化为对最下层关键字的删除。

如图示:

a、被删关键字Ki所在结点的关键字数目不小于ceil(m/2),则只需从结点中删除Ki和相应指针Ai,树的其它部分不变。

b、被删关键字Ki所在结点的关键字数目等于ceil(m/2)-1,则需调整。调整过程如上面所述。

c、被删关键字Ki所在结点和其相邻兄弟结点中的的关键字数目均等于ceil(m/2)-1,假设该结点有右兄弟,且其右兄弟结点地址由其双亲结点指针Ai所指。则在删除关键字之后,它所在结点的剩余关键字和指针,加上双亲结点中的关键字Ki一起,合并到Ai所指兄弟结点中(若无右兄弟,则合并到左兄弟结点中)。如果因此使双亲结点中的关键字数目少于ceil(m/2)-1,则依次类推.

B-树的更多相关文章

  1. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

  2. ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单

    前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...

  3. 再讲IQueryable<T>,揭开表达式树的神秘面纱

    接上篇<先说IEnumerable,我们每天用的foreach你真的懂它吗?> 最近园子里定制自己的orm那是一个风生水起,感觉不整个自己的orm都不好意思继续混博客园了(开个玩笑).那么 ...

  4. HDU1671——前缀树的一点感触

    题目http://acm.hdu.edu.cn/showproblem.php?pid=1671 题目本身不难,一棵前缀树OK,但是前两次提交都没有成功. 第一次Memory Limit Exceed ...

  5. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  6. [C#] C# 知识回顾 - 表达式树 Expression Trees

    C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...

  7. bzoj3207--Hash+主席树

    题目大意: 给定一个n个数的序列和m个询问(n,m<=100000)和k,每个询问包含k+2个数字:l,r,b[1],b[2]...b[k],要求输出b[1]~b[k]在[l,r]中是否出现. ...

  8. bzoj1901--树状数组套主席树

    树状数组套主席树模板题... 题目大意: 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[ ...

  9. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  10. jquery-treegrid树状表格的使用(.Net平台)

    上一篇介绍了DataTable,这一篇在DT的基础之上再使用jquery的一款插件:treegrid,官网地址:http://maxazan.github.io/jquery-treegrid/ 一. ...

随机推荐

  1. C Primer Plus(第五版)4

    第四章 字符串和格式化输入输出 4.2 字符串简介 字符串(character string)就是一个或多个字符的序列.下面是一个字符串的例子: “Zing went the strings of m ...

  2. java使用thrift

    maven项目添加依赖: <dependency> <groupId>org.apache.thrift</groupId> <artifactId>l ...

  3. 反射IsGenericType

    var propertyType = propertyInfo.PropertyType; if (propertyType.IsGenericType && propertyType ...

  4. some tips

    1.在使用selenium的时候,需要等待页面加载完成,特别是一些ajax请求,最好使用以下方法(python),通过document.readyState来判断 from selenium.webd ...

  5. 使用Donut Caching和Donut Hole Caching在ASP.NET MVC应用中缓存页面

    Donut Caching是缓存除了部分内容以外的整个页面的最好的方式,在它出现之前,我们使用"输出缓存"来缓存整个页面. 何时使用Donut Caching 假设你有一个应用程序 ...

  6. MATLAB mex文件

    MATLAB的mex文件是一种特征的函数封装形式,这类函数一般由C/C++语言编写的,经过MATLAB编译器处理而生成的二进制文件.它是可以被MATLAB解释器自动装载并执行的动态链接程序,类似于wi ...

  7. 如何制作prezi swf格式字体(prezi 中文字体)

    如何制作prezi swf格式字体(prezi 中文字体) 文/玄魂 前言 Prezi软件虽然没有正式进入中国,但是中国的Prezi爱好者却在不遗余力的推广着Prezi.我接触这款软件比较晚,但是从接 ...

  8. NOIP2003 传染病防治

    描述 研究表明,这种传染病的传播具有两种很特殊的性质:第一是它的传播途径是树型的,一个人X只可能被某个特定的人Y感染,只要Y不得病,或者是XY之间的传播途径被切断,则X就不会得病. 第二是,这种疾病的 ...

  9. java中反射

    Person.java===>>person.class ==>>jvm中的类加载器===>>class对象:代表内存中Person.class ==>> ...

  10. 《Unix/Linux日志分析与流量监控》书稿完成

    <Unix/Linux日志分析与流量监控>书稿完成 近日,历时3年创作的75万字书稿已完成,本书紧紧围绕网络安全的主题,对各种Unix/Linux系统及网络服务日志进行了全面系统的讲解,从 ...