poj 1016 Numbers That Count
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 17922 | Accepted: 5940 |
Description
maintaining an inventory book. For instance, if he has just made a sign containing the telephone number "5553141", he'll write down the number "5553141" in one column of his book, and in the next column he'll list how many of each digit he used: two 1s, one
3, one 4, and three 5s. (Digits that don't get used don't appear in the inventory.) He writes the inventory in condensed form, like this: "21131435".
The other day, Klyde filled an order for the number 31123314 and was amazed to discover that the inventory of this number is the same as the number---it has three 1s, one 2, three 3s, and one 4! He calls this an example of a "self-inventorying number", and
now he wants to find out which numbers are self-inventorying, or lead to a self-inventorying number through iterated application of the inventorying operation described below. You have been hired to help him in his investigations.
Given any non-negative integer n, its inventory is another integer consisting of a concatenation of integers c1 d1 c2 d2 ... ck dk , where each ci and di is an unsigned integer, every ci is positive, the di satisfy 0<=d1<d2<...<dk<=9, and, for each digit d
that appears anywhere in n, d equals di for some i and d occurs exactly ci times in the decimal representation of n. For instance, to compute the inventory of 5553141 we set c1 = 2, d1 = 1, c2 = 1, d2 = 3, etc., giving 21131435. The number 1000000000000 has
inventory 12011 ("twelve 0s, one 1").
An integer n is called self-inventorying if n equals its inventory. It is called self-inventorying after j steps (j>=1) if j is the smallest number such that the value of the j-th iterative application of the inventory function is self-inventorying. For instance,
21221314 is self-inventorying after 2 steps, since the inventory of 21221314 is 31321314, the inventory of 31321314 is 31123314, and 31123314 is self-inventorying.
Finally, n enters an inventory loop of length k (k>=2) if k is the smallest number such that for some integer j (j>=0), the value of the j-th iterative application of the inventory function is the same as the value of the (j + k)-th iterative application. For
instance, 314213241519 enters an inventory loop of length 2, since the inventory of 314213241519 is 412223241519 and the inventory of 412223241519 is 314213241519, the original number (we have j = 0 in this case).
Write a program that will read a sequence of non-negative integers and, for each input value, state whether it is self-inventorying, self-inventorying after j steps, enters an inventory loop of length k, or has none of these properties after 15 iterative applications
of the inventory function.
Input
Output
n is self-inventorying
n is self-inventorying after j steps
n enters an inventory loop of length k
n can not be classified after 15 iterations
Sample Input
22
31123314
314213241519
21221314
111222234459
-1
Sample Output
22 is self-inventorying
31123314 is self-inventorying
314213241519 enters an inventory loop of length 2
21221314 is self-inventorying after 2 steps
111222234459 enters an inventory loop of length 2
题目大意:给一个大数,问我们经过多少次操作以后可以得到一个循环,操作的方法就是统计这个数中由小到大的数字出现的次数,然后写成 (数字1出现次数)1(数字2出现次数)2这样的形式,没有这个数字就不写。
问经过多少次操作可以出现循环,。循环的结果有4种:
1、本身就是一个循环,就是说数字a操作一个还是数字a : a->a->a->a
2、经过n步以后变成条件1的情况:a->b->c->c->c->c->c
3、经过n步以后构成了一个环:a->b->c->a->b->c
4、经过15次操作依然没出现以上3种情况
题目就是一个模拟题,不过判重我用了一个map把字符串映射一个数字,但速度很慢 200+ms,后来看了别人的思路,就是存在一个字符串数组里顺序比较就行了,效率很高32MS,看来是我想太多了。。。。
#include<stdio.h>
#include<map>
#include<string>
#include<string.h>
#include<iostream>
using namespace std;
string solve(string str)
{
int i;
int hash[10] = {0};
int len = str.length();
for(i = 0; i < len; i++)
{
hash[str[i] - '0'] ++;
}
string new_str;
char ch[30] = {0};
for(i = 0; i < 10; i++)
{
if(hash[i] != 0)
{
sprintf(ch, "%d%d", hash[i], i);
new_str.append(ch); }
}
return new_str;
}
int main()
{
// freopen("in.txt", "r", stdin);
string s;
while(cin >> s)
{
if(s == "-1")
break;
map<string, int> mymap;
mymap[s] = 0;
string new_str = s, prev;
int i;
int flag = 0;
for(i = 1; i < 16; i++)
{
prev = new_str;
new_str = solve(new_str);
if(prev == new_str)
{
flag = 1;
break;
}
if(mymap[new_str] != 0)
{
flag = i - mymap[new_str];
break;
}
else
mymap[new_str] = i;
}
if(i == 1)
cout << s << " is self-inventorying" << endl;
else if(i < 16)
{
if(flag == 1)
cout << s << " is self-inventorying after " << i - 1 << " steps" << endl;
else
cout << s << " enters an inventory loop of length " << flag << endl;
}
else
cout << s << " can not be classified after 15 iterations" << endl;
}
return 0;
}
poj 1016 Numbers That Count的更多相关文章
- POJ 1016 Numbers That Count 不难,但要注意细节
题意是将一串数字转换成另一种形式.比如5553141转换成2个1,1个3,1个4,3个5,即21131435.1000000000000转换成12011.数字的个数是可能超过9个的.n个m,m是从小到 ...
- POJ1016 Numbers That Count
题目来源:http://poj.org/problem?id=1016 题目大意: 对一个非负整数定义一种运算(inventory):数这个数中各个数字出现的次数,然后按顺序记录下来.比如“55531 ...
- POJ 1016 模拟字符串
Numbers That Count Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20396 Accepted: 68 ...
- Numbers That Count POJ - 1016
"Kronecker's Knumbers" is a little company that manufactures plastic digits for use in sig ...
- POJ 1016
http://poj.org/problem?id=1016 一道字符串处理的题目,理解题意后注意细节就好. 题意:每一串数字 都可以写成 a1 b1 a2 b2 ....ai bi 其中ai是指bi ...
- B - Numbers That Count
Description "Kronecker's Knumbers" is a little company that manufactures plastic di ...
- poj Pseudoprime numbers 3641
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10903 Accepted: 4 ...
- POJ Round Numbers(数位DP)
题目大意: Round Number: 将一个整数转化为二进制数字后,(不含前导0) 要是0的个数 大于等于1的个数 则是 Round Number 问从L-R之中有多少个Round Number ...
- POJ Pseudoprime numbers( Miller-Rabin素数测试 )
链接:传送门 题意:题目给出费马小定理:Fermat's theorem states that for any prime number p and for any integer a > 1 ...
随机推荐
- Ext is not defined
最近由于项目设计到Extjs所以也准备研究一下,可是谁知道刚写好一个demo,运行的时候死活出不来界面,于是用firebug看了一下,出现:Ext is not defined,因为刚开始学也不知道是 ...
- sqlplus将查询结果重定向到文件,不输出到屏幕
--每行的字符数目 --该参数设置每页输出的行数.n=0表示不产生新页 --显示和拷贝long类型值的最大宽度的设置,最大值2G --sqlplus检索long类型值的增量大小.由于内存的限制 可按增 ...
- 【linux】/etc/passwd文件
/etc/passwd文件内容格式 /etc/passwd是保存用户信息的文件. 格式:用户名: 密码 : uid : gid :用户描述:主目录:登陆shell 举个例子: root:x:0:0: ...
- linux挂载文件
Linux挂载Winodws共享文件夹 mount -t cifs -o username=***,password=*** //192.168.1.48/share /mnt 其中-t表示要挂载的类 ...
- 迁移学习(Transfer Learning)(转载)
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型 ...
- 重复ID的记录,只显示其中1条
--重复ID的记录,只显示其中1条 --生成原始表 select * into #tempTable from ( select '1' as id ,'a' as name union all se ...
- 有关JSP注释
最近学习过滤器的时候,dispatcher可以指定过滤器被Servlet容器拦截的方式,可以是REQUEST.INCLUDE.FORWARD.ERROR,默认是REQUEST方式. 现在有两个filt ...
- 异常处理:Sys.WebForms.PageRequestManagerParserErrorException:The message……
如果你为了使页面可以达到局部刷新的效果,并且用了UpdatePanel控件,这是如果你在后台页面用到Response对象时肯呢过会抛出一下异常: 解决方法:$(document).ready(func ...
- System.ArgumentOutOfRangeException: 年、月和日参数描述无法表示的 DateTime。
c#日期控件 格式设为 yyyy-MM,通过updown 方式调整日期. 当为月度最后一天,且要调整月没有当前月的最后一天时,就会报标题错误. 如:当前为1月31日,要调整为2月时,就会报错.因为2月 ...
- java-Spring-1
1.@Autowired 自动寻找合适的类型注入,byType2.@Qualifier("userDAOImpl") 存在多个相同类型时,指定固定的一个bean,和上面1配合使用3 ...