点击打开链接

Numbers That Count
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17922   Accepted: 5940

Description

"Kronecker's Knumbers" is a little company that manufactures plastic digits for use in signs (theater marquees, gas station price displays, and so on). The owner and sole employee, Klyde Kronecker, keeps track of how many digits of each type he has used by
maintaining an inventory book. For instance, if he has just made a sign containing the telephone number "5553141", he'll write down the number "5553141" in one column of his book, and in the next column he'll list how many of each digit he used: two 1s, one
3, one 4, and three 5s. (Digits that don't get used don't appear in the inventory.) He writes the inventory in condensed form, like this: "21131435". 



The other day, Klyde filled an order for the number 31123314 and was amazed to discover that the inventory of this number is the same as the number---it has three 1s, one 2, three 3s, and one 4! He calls this an example of a "self-inventorying number", and
now he wants to find out which numbers are self-inventorying, or lead to a self-inventorying number through iterated application of the inventorying operation described below. You have been hired to help him in his investigations. 



Given any non-negative integer n, its inventory is another integer consisting of a concatenation of integers c1 d1 c2 d2 ... ck dk , where each ci and di is an unsigned integer, every ci is positive, the di satisfy 0<=d1<d2<...<dk<=9, and, for each digit d
that appears anywhere in n, d equals di for some i and d occurs exactly ci times in the decimal representation of n. For instance, to compute the inventory of 5553141 we set c1 = 2, d1 = 1, c2 = 1, d2 = 3, etc., giving 21131435. The number 1000000000000 has
inventory 12011 ("twelve 0s, one 1"). 



An integer n is called self-inventorying if n equals its inventory. It is called self-inventorying after j steps (j>=1) if j is the smallest number such that the value of the j-th iterative application of the inventory function is self-inventorying. For instance,
21221314 is self-inventorying after 2 steps, since the inventory of 21221314 is 31321314, the inventory of 31321314 is 31123314, and 31123314 is self-inventorying. 



Finally, n enters an inventory loop of length k (k>=2) if k is the smallest number such that for some integer j (j>=0), the value of the j-th iterative application of the inventory function is the same as the value of the (j + k)-th iterative application. For
instance, 314213241519 enters an inventory loop of length 2, since the inventory of 314213241519 is 412223241519 and the inventory of 412223241519 is 314213241519, the original number (we have j = 0 in this case). 



Write a program that will read a sequence of non-negative integers and, for each input value, state whether it is self-inventorying, self-inventorying after j steps, enters an inventory loop of length k, or has none of these properties after 15 iterative applications
of the inventory function.

Input

A sequence of non-negative integers, each having at most 80 digits, followed by the terminating value -1. There are no extra leading zeros.

Output

For each non-negative input value n, output the appropriate choice from among the following messages (where n is the input value, j is a positive integer, and k is a positive integer greater than 1): 

n is self-inventorying 

n is self-inventorying after j steps 

n enters an inventory loop of length k 

n can not be classified after 15 iterations

Sample Input

22
31123314
314213241519
21221314
111222234459
-1

Sample Output

22 is self-inventorying
31123314 is self-inventorying
314213241519 enters an inventory loop of length 2
21221314 is self-inventorying after 2 steps
111222234459 enters an inventory loop of length 2

题目大意:给一个大数,问我们经过多少次操作以后可以得到一个循环,操作的方法就是统计这个数中由小到大的数字出现的次数,然后写成  (数字1出现次数)1(数字2出现次数)2这样的形式,没有这个数字就不写。

问经过多少次操作可以出现循环,。循环的结果有4种:

1、本身就是一个循环,就是说数字a操作一个还是数字a : a->a->a->a

2、经过n步以后变成条件1的情况:a->b->c->c->c->c->c

3、经过n步以后构成了一个环:a->b->c->a->b->c

4、经过15次操作依然没出现以上3种情况

题目就是一个模拟题,不过判重我用了一个map把字符串映射一个数字,但速度很慢 200+ms,后来看了别人的思路,就是存在一个字符串数组里顺序比较就行了,效率很高32MS,看来是我想太多了。。。。

#include<stdio.h>
#include<map>
#include<string>
#include<string.h>
#include<iostream>
using namespace std;
string solve(string str)
{
int i;
int hash[10] = {0};
int len = str.length();
for(i = 0; i < len; i++)
{
hash[str[i] - '0'] ++;
}
string new_str;
char ch[30] = {0};
for(i = 0; i < 10; i++)
{
if(hash[i] != 0)
{
sprintf(ch, "%d%d", hash[i], i);
new_str.append(ch); }
}
return new_str;
}
int main()
{
// freopen("in.txt", "r", stdin);
string s;
while(cin >> s)
{
if(s == "-1")
break;
map<string, int> mymap;
mymap[s] = 0;
string new_str = s, prev;
int i;
int flag = 0;
for(i = 1; i < 16; i++)
{
prev = new_str;
new_str = solve(new_str);
if(prev == new_str)
{
flag = 1;
break;
}
if(mymap[new_str] != 0)
{
flag = i - mymap[new_str];
break;
}
else
mymap[new_str] = i;
}
if(i == 1)
cout << s << " is self-inventorying" << endl;
else if(i < 16)
{
if(flag == 1)
cout << s << " is self-inventorying after " << i - 1 << " steps" << endl;
else
cout << s << " enters an inventory loop of length " << flag << endl;
}
else
cout << s << " can not be classified after 15 iterations" << endl;
}
return 0;
}

poj 1016 Numbers That Count的更多相关文章

  1. POJ 1016 Numbers That Count 不难,但要注意细节

    题意是将一串数字转换成另一种形式.比如5553141转换成2个1,1个3,1个4,3个5,即21131435.1000000000000转换成12011.数字的个数是可能超过9个的.n个m,m是从小到 ...

  2. POJ1016 Numbers That Count

    题目来源:http://poj.org/problem?id=1016 题目大意: 对一个非负整数定义一种运算(inventory):数这个数中各个数字出现的次数,然后按顺序记录下来.比如“55531 ...

  3. POJ 1016 模拟字符串

    Numbers That Count Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20396   Accepted: 68 ...

  4. Numbers That Count POJ - 1016

    "Kronecker's Knumbers" is a little company that manufactures plastic digits for use in sig ...

  5. POJ 1016

    http://poj.org/problem?id=1016 一道字符串处理的题目,理解题意后注意细节就好. 题意:每一串数字 都可以写成 a1 b1 a2 b2 ....ai bi 其中ai是指bi ...

  6. B - Numbers That Count

    Description        "Kronecker's Knumbers" is a little company that manufactures plastic di ...

  7. poj Pseudoprime numbers 3641

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10903   Accepted: 4 ...

  8. POJ Round Numbers(数位DP)

    题目大意: Round Number:  将一个整数转化为二进制数字后,(不含前导0) 要是0的个数 大于等于1的个数 则是 Round Number 问从L-R之中有多少个Round Number ...

  9. POJ Pseudoprime numbers( Miller-Rabin素数测试 )

    链接:传送门 题意:题目给出费马小定理:Fermat's theorem states that for any prime number p and for any integer a > 1 ...

随机推荐

  1. java找jar包、搜索class类 搜索maven

    sourceforge.net https://github.com/ http://www.findmaven.net/搜索class类 http://mvnrepository.com/

  2. HTTP响应头和请求头信息对照表

    HTTP请求头提供了关于请求,响应或者其他的发送实体的信息.HTTP的头信息包括通用头.请求头.响应头和实体头四个部分.每个头域由一个域名,冒号(:)和域值三部分组成. 通用头标:即可用于请求,也可用 ...

  3. C语言数组初始化全部为0

    ] = {}; 编译器会把第一个初始化值(这里是0)赋给数组的第一个元素,然后用默认值0赋给其余的元素.如果没有给出初始值,编译器不会去做初始化工作.这样简洁的方式让代码更加高效. 另一种,就是mem ...

  4. 在Ext JS 5应用程序中如何使用路由

    简介 Ext JS 5是一个重要的发布版本,它提供了许多新特性来创建丰富的.企业级的Web应用程序.MVVM和双向数据绑定为开发人员承担了大量的繁重工作.在Ext JS 5种,另一个新特性就是路由,它 ...

  5. CSS3中样式顺序

    .box{ /*1*/ background: yellow; /*2*/ background: radial-gradient(ellise, yellow, red); } 就以上样式1和2的顺 ...

  6. SPOJ #5 The Next Palindrome

    "not more than 1000000 digits" means an efficient in-place solution is needed. My first so ...

  7. phpstorm laravel单元测试 配置

    laravel中集成了单元测试工具phpunit可以在项目的根目录下进行使用,命令是:phpunti ./tests/单元测试文件名称.在phpstorm中使用phpunit需要做一些配置,指定com ...

  8. Python 从sketch中读取文件

    =============================== RESTART: Shell =============================== >>> import o ...

  9. FastReport使用总结三——条码简介

    FastReport Desinger中支持的Barcode类型如下图所示: 设置其Barcode属性可以实现支持不同的条码类型. 注意: 支持的条码类型说明如下: 总结: 1.通过设置Barcode ...

  10. 一个快速、完善的Android开发框架整合实践(QuickAndroid)

    https://github.com/alafighting/QuickAndroid QuickAndroid 一个快速.完善的Android开发框架整合实践 QA项目简介 本框架QuickAndr ...