1.概述

    跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度。MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页。它也可以应用于大规模聚类问题。

 
2.Jaccard index
 
    在介绍MinHash之前,我们先介绍下Jaccard index。
 

Jaccard index是用来计算相似性,也就是距离的一种度量标准。假如有集合A、B,那么,

    也就是说,集合A,B的Jaccard系数等于A,B中共同拥有的元素数与A,B总共拥有的元素数的比例。很显然,Jaccard系数值区间为[0,1]。
 
3.MinHash
 
    先定义几个符号术语:
    h(x):  把x映射成一个整数的哈希函数。   
    hmin(S):集合S中的元素经过h(x)哈希后,具有最小哈希值的元素。

那么对集合A、B,hmin(A) = hmin(B)成立的条件是A ∪ B 中具有最小哈希值的元素也在 ∩ B中。这里

有一个假设,h(x)是一个良好的哈希函数,它具有很好的均匀性,能够把不同元素映射成不同的整数。

所以有,Pr[hmin(A) = hmin(B)] = J(A,B),即集合A和B的相似度为集合A、B经过hash后最小哈希值相

等的概率。

        有了上面的结论,我们便可以根据MinHash来计算两个集合的相似度了。一般有两种方法:
        
        第一种:使用多个hash函数
 
        为了计算集合A、B具有最小哈希值的概率,我们可以选择一定数量的hash函数,比如K个。然后用这K个hash函数分别对集合A、B求哈希值,对
每个集合都得到K个最小值。比如Min(A)k={a1,a2,...,ak},Min(B)k={b1,b2,...,bk}。
        那么,集合A、B的相似度为|Min(A)k ∩ Min(B)k| / |Min(A)k  ∪  Min(B)k|,及Min(A)k和Min(B)k中相同元素个数与总的元素个数的比例。
 
       第二种:使用单个hash函数
 
       第一种方法有一个很明显的缺陷,那就是计算复杂度高。使用单个hash函数是怎么解决这个问题的呢?请看:
       前面我们定义过 hmin(S)为集合S中具有最小哈希值的一个元素,那么我们也可以定义hmink(S)为集合S中具有最小哈希值的K个元素。这样一来,
我们就只需要对每个集合求一次哈希,然后取最小的K个元素。计算两个集合A、B的相似度,就是集合A中最小的K个元素与集合B中最小的K个元素
的交集个数与并集个数的比例。
        
      看完上面的,你应该大概清楚MinHash是怎么回事了。但是,MinHash的好处到底在哪里呢?计算两篇文档的相似度,就直接统计相同的词数和总的
次数,然后就Jaccard index不就可以了吗?对,如果仅仅对两篇文档计算相似度而言,MinHash没有什么优势,反而把问题复杂化了。但是如果有海量的文档需要求相似度,比如在推荐系统
中计算物品的相似度,如果两两计算相似度,计算量过于庞大。下面我们看看MinHash是怎么解决问题的。
 
      比如 元素集合{a,b,c,d,e},其中s1={a,d},s2={c},s3={b,d,e},s4={a,c,d}   那么这四个集合的矩阵表示为:  

 

    如果要对某一个集合做MinHash,则可以从上面矩阵的任意一个行排列中选取一个,然后MinHash值是排列中第一个1的行号。
    例如,对上述矩阵,我们选取排列 beadc,那么对应的矩阵为
          
    那么, h(S1) = a,同样可以得到h(S2) = c, h(S3) = b, h(S4) = a。
        如果只对其中一个行排列做MinHash,不用说,计算相似度当然是不可靠的。因此,我们要选择多个行排列来计算MinHash,最后根据Jaccard index公式 来计算相似度。但是求排列本身的复杂度比较高,特别是针对很大的矩阵来说。因此,我们可以设计一个随机哈希函数去模拟排列,能够把行号0~n随机映射到0~n上。比如H(0)=100,H(1)=3...。当然,冲突是不可避免的,冲突后可以二次散列。并且如果选取的随机哈希函数够均匀,并且当n较大时,冲突发生的概率还是比较低的。关于随机排列算法可以参考这篇文章:随机排列生成算法的一些随想
 
    说到这里,只是讨论了用MinHash对海量文档求相似度的具体过程,但是它到底是怎么减少复杂度的呢?
    比如有n个文档,每个文档的维度为m,我们可以选取其中k个排列求MinHash,由于每个对每个排列而言,MinHash把一篇文档映射成一个整数,所以对k个排列计算MinHash就得到k个整数。那么所求的MinHash矩阵为n*k维,而原矩阵为n*m维。n>>m时,计算量就降了下来。
    
 
4.参考文献
 

文本去重之MinHash算法的更多相关文章

  1. 文本去重之MinHash算法——就是多个hash函数对items计算特征值,然后取最小的计算相似度

    来源:http://my.oschina.net/pathenon/blog/65210 1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.Mi ...

  2. 文本去重之SimHash算法

    文本去重之SimHash算法 - pathenon的个人页面 - 开源中国社区 文本去重之SimHash算法

  3. 文本相似性计算--MinHash和LSH算法

    给定N个集合,从中找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合.那么可以十分精确的找到每一对相似的集合,但是时间复杂度是O(n2).此外,假如,N个集合中只有少数几对集合相似,绝大多数集 ...

  4. [Algorithm] 使用SimHash进行海量文本去重

    在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(L ...

  5. 使用SimHash进行海量文本去重[转载]

    阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...

  6. 使用SimHash进行海量文本去重[转]

    阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...

  7. 使用SimHash进行海量文本去重

    阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...

  8. 海量数据去重之SimHash算法简介和应用

    SimHash是什么 SimHash是Google在2007年发表的论文<Detecting Near-Duplicates for Web Crawling >中提到的一种指纹生成算法或 ...

  9. 初识【Windows API】--文本去重

    最近学习操作系统中,老师布置了一个作业,运用系统调用函数删除文件夹下两个重复文本类文件,Linux玩不动,于是就只能在Windows下进行了. 看了一下介绍Windows API的博客: 点击打开 基 ...

随机推荐

  1. MQ集群测试环境搭建(多节点负载均衡,共享一个kahaDB文件(nas方式))

    1. os ubuntu12.04 基础环境准备 干掉不好用的vim重新装 sudo apt-get remove vim-common sudo apt-get install vim 如果需要使用 ...

  2. [原创]java WEB学习笔记77:Hibernate学习之路---Hibernate 版本 helloword 与 解析,.环境搭建,hibernate.cfg.xml文件及参数说明,持久化类,对象-关系映射文件.hbm.xml,Hibernate API (Configuration 类,SessionFactory 接口,Session 接口,Transaction(事务))

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  3. [原创]java WEB学习笔记72:Struts2 学习之路-- 文件的上传下载,及上传下载相关问题

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  4. UML: 协作图

    摘自http://www.umlonline.org/school/thread-38-1-1.html UML1.1时,协作图英文名字叫:Collaboration Diagram,UML2.0时, ...

  5. javaapi中的排序

    有的时候需要对数组里的element进行排序.当然可以自己编写合适的排序方法,但既然java包里有自带的Arrays.sort排序方法,在 数组元素比较少的时候为何不用? Sorting an Arr ...

  6. bzoj4448 [Scoi2015]情报传递

    第一问不解释,对于第二问的处理,可以使用cdq分治,假设分治的询问区间是[L,R],那么我们对于标号在[L,mid]的修改操作赋予一个权值,因为在当前[L,R]中[L,mid]的修改操作只会对[mid ...

  7. CCF真题之网络延时

    201503-4 问题描述 给定一个公司的网络,由n台交换机和m台终端电脑组成,交换机与交换机.交换机与电脑之间使用网络连接.交换机按层级设置,编号为1的交换机为根交换机,层级为1.其他的交换机都连接 ...

  8. fackbook的Fresco的多种图片加载方法以及解码过程

    上篇文章中我们提到了图片加载其实是用了三条线程,如果没看过的同学可以先了解下这里. fackbook的Fresco的Image Pipeline以及自身的缓存机制 那么今天我们就来探索一下如何在代码中 ...

  9. paper 76:膨胀、腐蚀、开、闭运算——数字图像处理中的形态学

    膨胀.腐蚀.开.闭运算是数学形态学最基本的变换.本文主要针对二值图像的形态学膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔):腐蚀:把二值图像各1像素连接成分的边界点去掉从而 ...

  10. paper 17 : 机器学习算法思想简单梳理

    前言: 本文总结的常见机器学习算法(主要是一些常规分类器)大概流程和主要思想. 朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分 ...