1.概述

    跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度。MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页。它也可以应用于大规模聚类问题。

 
2.Jaccard index
 
    在介绍MinHash之前,我们先介绍下Jaccard index。
 

Jaccard index是用来计算相似性,也就是距离的一种度量标准。假如有集合A、B,那么,

    也就是说,集合A,B的Jaccard系数等于A,B中共同拥有的元素数与A,B总共拥有的元素数的比例。很显然,Jaccard系数值区间为[0,1]。
 
3.MinHash
 
    先定义几个符号术语:
    h(x):  把x映射成一个整数的哈希函数。   
    hmin(S):集合S中的元素经过h(x)哈希后,具有最小哈希值的元素。

那么对集合A、B,hmin(A) = hmin(B)成立的条件是A ∪ B 中具有最小哈希值的元素也在 ∩ B中。这里

有一个假设,h(x)是一个良好的哈希函数,它具有很好的均匀性,能够把不同元素映射成不同的整数。

所以有,Pr[hmin(A) = hmin(B)] = J(A,B),即集合A和B的相似度为集合A、B经过hash后最小哈希值相

等的概率。

        有了上面的结论,我们便可以根据MinHash来计算两个集合的相似度了。一般有两种方法:
        
        第一种:使用多个hash函数
 
        为了计算集合A、B具有最小哈希值的概率,我们可以选择一定数量的hash函数,比如K个。然后用这K个hash函数分别对集合A、B求哈希值,对
每个集合都得到K个最小值。比如Min(A)k={a1,a2,...,ak},Min(B)k={b1,b2,...,bk}。
        那么,集合A、B的相似度为|Min(A)k ∩ Min(B)k| / |Min(A)k  ∪  Min(B)k|,及Min(A)k和Min(B)k中相同元素个数与总的元素个数的比例。
 
       第二种:使用单个hash函数
 
       第一种方法有一个很明显的缺陷,那就是计算复杂度高。使用单个hash函数是怎么解决这个问题的呢?请看:
       前面我们定义过 hmin(S)为集合S中具有最小哈希值的一个元素,那么我们也可以定义hmink(S)为集合S中具有最小哈希值的K个元素。这样一来,
我们就只需要对每个集合求一次哈希,然后取最小的K个元素。计算两个集合A、B的相似度,就是集合A中最小的K个元素与集合B中最小的K个元素
的交集个数与并集个数的比例。
        
      看完上面的,你应该大概清楚MinHash是怎么回事了。但是,MinHash的好处到底在哪里呢?计算两篇文档的相似度,就直接统计相同的词数和总的
次数,然后就Jaccard index不就可以了吗?对,如果仅仅对两篇文档计算相似度而言,MinHash没有什么优势,反而把问题复杂化了。但是如果有海量的文档需要求相似度,比如在推荐系统
中计算物品的相似度,如果两两计算相似度,计算量过于庞大。下面我们看看MinHash是怎么解决问题的。
 
      比如 元素集合{a,b,c,d,e},其中s1={a,d},s2={c},s3={b,d,e},s4={a,c,d}   那么这四个集合的矩阵表示为:  

 

    如果要对某一个集合做MinHash,则可以从上面矩阵的任意一个行排列中选取一个,然后MinHash值是排列中第一个1的行号。
    例如,对上述矩阵,我们选取排列 beadc,那么对应的矩阵为
          
    那么, h(S1) = a,同样可以得到h(S2) = c, h(S3) = b, h(S4) = a。
        如果只对其中一个行排列做MinHash,不用说,计算相似度当然是不可靠的。因此,我们要选择多个行排列来计算MinHash,最后根据Jaccard index公式 来计算相似度。但是求排列本身的复杂度比较高,特别是针对很大的矩阵来说。因此,我们可以设计一个随机哈希函数去模拟排列,能够把行号0~n随机映射到0~n上。比如H(0)=100,H(1)=3...。当然,冲突是不可避免的,冲突后可以二次散列。并且如果选取的随机哈希函数够均匀,并且当n较大时,冲突发生的概率还是比较低的。关于随机排列算法可以参考这篇文章:随机排列生成算法的一些随想
 
    说到这里,只是讨论了用MinHash对海量文档求相似度的具体过程,但是它到底是怎么减少复杂度的呢?
    比如有n个文档,每个文档的维度为m,我们可以选取其中k个排列求MinHash,由于每个对每个排列而言,MinHash把一篇文档映射成一个整数,所以对k个排列计算MinHash就得到k个整数。那么所求的MinHash矩阵为n*k维,而原矩阵为n*m维。n>>m时,计算量就降了下来。
    
 
4.参考文献
 

文本去重之MinHash算法的更多相关文章

  1. 文本去重之MinHash算法——就是多个hash函数对items计算特征值,然后取最小的计算相似度

    来源:http://my.oschina.net/pathenon/blog/65210 1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.Mi ...

  2. 文本去重之SimHash算法

    文本去重之SimHash算法 - pathenon的个人页面 - 开源中国社区 文本去重之SimHash算法

  3. 文本相似性计算--MinHash和LSH算法

    给定N个集合,从中找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合.那么可以十分精确的找到每一对相似的集合,但是时间复杂度是O(n2).此外,假如,N个集合中只有少数几对集合相似,绝大多数集 ...

  4. [Algorithm] 使用SimHash进行海量文本去重

    在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(L ...

  5. 使用SimHash进行海量文本去重[转载]

    阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...

  6. 使用SimHash进行海量文本去重[转]

    阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...

  7. 使用SimHash进行海量文本去重

    阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...

  8. 海量数据去重之SimHash算法简介和应用

    SimHash是什么 SimHash是Google在2007年发表的论文<Detecting Near-Duplicates for Web Crawling >中提到的一种指纹生成算法或 ...

  9. 初识【Windows API】--文本去重

    最近学习操作系统中,老师布置了一个作业,运用系统调用函数删除文件夹下两个重复文本类文件,Linux玩不动,于是就只能在Windows下进行了. 看了一下介绍Windows API的博客: 点击打开 基 ...

随机推荐

  1. 理解v$sql的exact_matching_signature与force_matching_signature

    理解v$sql的exact_matching_signature与force_matching_signature 对SQL语句,去掉重复的空格(不包括字符常量),将大小写转换成相同,比如均为大写(不 ...

  2. wpf 面试题目

    初级工程师 解释什么是依赖属性,它和以前的属性有什么不同?为什么在WPF会使用它?什么是样式什么是模板绑定(Binding )的基础用法解释这几个类的作用及关系: Visual, UIElement, ...

  3. Dive into python 实例学python (2) —— 自省,apihelper

    apihelper.py def info(object, spacing=10, collapse=1): """Print methods and doc strin ...

  4. java io读书笔记(2)什么是stream

    什么是stream?stream就是一个长度不确定的有序字节序列. Input streams move bytes of data into a Java program from some gen ...

  5. 如何抠PSD素材中的图片

    在网上经常可以找到一些好看呢的PSD素材,如何才能将这些素材抠出来 存成一张张的png图片呢? 在PhotoShop中 1·隐藏无用的图层,然后窗口中仅剩需要看到的那个素材图 2·用工具选择该区域(注 ...

  6. 一个新人对JavaScript的内容简单介绍

    JavaScript 1.基本的数据类型:字符串  小数  整数  时间日期  布尔型等. 2.变量: JS定义变量通通都是用var开头,var里面可以放任何东西(如:小数,整数,字符串,时间日期等等 ...

  7. VPN服务器的配置与应用

      实验场景 通过将Linux配置VPN服务器允许远程计算机能够访问内网. 我的目的: 现在需要开发第三方接口,而第三方接口有服务器IP地址鉴权配置,这样在本地开发出来的程序每次都要发布到服务器上测试 ...

  8. Linux 安装 nginx注意

    ./configure --prefix=/usr/local/nginx TO ./configure --prefix=/usr/local/nginx --conf-path=/usr/loca ...

  9. 管理科学与工程 国内核心期刊 国外a刊及SCI

    国内: 管理科学与工程: 管理科学学报 A+   (匿名审稿,绝对牛刊,不比一般的SCi期刊的质量差) 系统工程理论与实践 A   (实名审稿,关系稿很多,尤其是挂编委的文章很多,但质量尚可)系统工程 ...

  10. 基于UP-CUP6410点灯实验完成

    远程点灯实验 实验目的: 实现远程点灯,通过gprs 自带调试软件发送信息,完成智能家具远程点灯实验. 1.定制arm系统 使用uboot资料自带的!在内核中添加pl2303串口驱动,进行u口转串口的 ...