Eliminate the Conflict

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1315    Accepted Submission(s): 563
Problem Description
Conflicts are everywhere in the world, from the young to the elderly, from families to countries. Conflicts cause quarrels, fights or even wars. How wonderful the world will be if all conflicts can be eliminated.

Edward contributes his lifetime to invent a 'Conflict Resolution Terminal' and he has finally succeeded. This magic item has the ability to eliminate all the conflicts. It works like this:

If any two people have conflict, they should simply put their hands into the 'Conflict Resolution Terminal' (which is simply a plastic tube). Then they play 'Rock, Paper and Scissors' in it. After they have decided what they will play, the tube should be opened and no one will have the chance to change. Finally, the winner have the right to rule and the loser should obey it. Conflict Eliminated!

But the game is not that fair, because people may be following some patterns when they play, and if the pattern is founded by others, the others will win definitely.

Alice and Bob always have conflicts with each other so they use the 'Conflict Resolution Terminal' a lot. Sadly for Bob, Alice found his pattern and can predict how Bob plays precisely. She is very kind that doesn't want to take advantage of that. So she tells Bob about it and they come up with a new way of eliminate the conflict:

They will play the 'Rock, Paper and Scissors' for N round. Bob will set up some restricts on Alice.

But the restrict can only be in the form of "you must play the same (or different) on the ith and jth rounds". If Alice loses in any round or break any of the rules she loses, otherwise she wins.

Will Alice have a chance to win?
 
Input
The first line contains an integer T(1 <= T <= 50), indicating the number of test cases.

Each test case contains several lines.

The first line contains two integers N,M(1 <= N <= 10000, 1 <= M <= 10000), representing how many round they will play and how many restricts are there for Alice.

The next line contains N integers B
1,B
2, ...,B
N, where B
i represents what item Bob will play in the i
th round. 1 represents Rock, 2 represents Paper, 3 represents Scissors.

The following M lines each contains three integers A,B,K(1 <= A,B <= N,K = 0 or 1) represent a restrict for Alice. If K equals 0, Alice must play the same on A
th and B
th round. If K equals 1, she must play different items on Ath and Bthround.
 
Output
For each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y is "yes" or "no" represents whether Alice has a chance to win.
 
Sample Input
2
3 3
1 1 1
1 2 1
1 3 1
2 3 1
5 5
1 2 3 2 1
1 2 1
1 3 1
1 4 1
1 5 1
2 3 0
 
Sample Output
Case #1: no
Case #2: yes

Hint

'Rock, Paper and Scissors' is a game which played by two person. They should play Rock, Paper or Scissors by their hands at the same time.
Rock defeats scissors, scissors defeats paper and paper defeats rock. If two people play the same item, the game is tied..

 
Source


题意:
Alice和Bob玩石头、剪刀、布,玩n局,Alice已知Bob的n局的出法,Bob给了Alice m个限制第i、j两次必须相同或不同,问Alice能否不输。


思路:
已知Bob的出法后,保证Alice不输,那每局Alice就有两种出法,问题就变为2-sat了,根据Alice每局的出法,给出限制后找到约束条件建边就够了。注意挖掘隐含的约束条件,如i、j相同,而Bob在i、j出法不同,那么Alice在i中的选择与在j中的选择只有一个交集,必须选择这个交集,选了其他的就错了。(我就卡在这个地方了)

代码:
#include <cstdio>
#include <cstring>
#define maxn 20005
#define MAXN 100005
using namespace std; int n,m,num,flag;
int bob[maxn];
int head[maxn];
int scc[maxn];
int vis[maxn];
int stack1[maxn];
int stack2[maxn];
struct edge
{
int v,next;
} g[MAXN];
int a[4][2]=
{
0,0,
1,2,
2,3,
1,3
}; void init()
{
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(scc,0,sizeof(scc));
stack1[0] = stack2[0] = num = 0;
flag = 1;
}
void addedge(int u,int v)
{
num++;
g[num].v = v;
g[num].next = head[u];
head[u] = num;
}
void dfs(int cur,int &sig,int &cnt)
{
if(!flag) return;
vis[cur] = ++sig;
stack1[++stack1[0]] = cur;
stack2[++stack2[0]] = cur;
for(int i = head[cur]; i; i = g[i].next)
{
if(!vis[g[i].v]) dfs(g[i].v,sig,cnt);
else
{
if(!scc[g[i].v])
{
while(vis[stack2[stack2[0]]] > vis[g[i].v])
stack2[0] --;
}
}
}
if(stack2[stack2[0]] == cur)
{
stack2[0] --;
++cnt;
do
{
scc[stack1[stack1[0]]] = cnt;
int tmp = stack1[stack1[0]];
if((tmp >n && scc[tmp - n] == cnt) || (tmp <= n && scc[tmp + n] == cnt)) // 注意这里的‘=’号
{
flag = false;
return;
}
}
while(stack1[stack1[0] --] != cur);
}
}
void Twosat()
{
int i,sig,cnt;
sig = cnt = 0;
for(i=0; i<n+n&&flag; i++)
{
if(!vis[i]) dfs(i,sig,cnt);
}
}
int main()
{
int i,j,t,u,v,k,test=0;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
num=0;
for(i=1; i<=n; i++)
{
scanf("%d",&bob[i]);
}
for(i=1; i<=m; i++)
{
scanf("%d%d%d",&u,&v,&k);
if(k)
{
if(a[bob[u]][0]==a[bob[v]][0]) addedge(u,v+n),addedge(v,u+n);
if(a[bob[u]][0]==a[bob[v]][1]) addedge(u,v),addedge(v+n,u+n);
if(a[bob[u]][1]==a[bob[v]][0]) addedge(u+n,v+n),addedge(v,u);
if(a[bob[u]][1]==a[bob[v]][1]) addedge(u+n,v),addedge(v+n,u);
}
else
{
if(bob[u]==bob[v])
{
addedge(u,v);
addedge(v,u);
addedge(u+n,v+n);
addedge(v+n,u+n);
}
else
{ //注意这里 只能唯一的选择一条边等价于不能选其他边
if(a[bob[u]][0]==a[bob[v]][0]) addedge(u+n,u),addedge(v+n,v);
if(a[bob[u]][0]==a[bob[v]][1]) addedge(u+n,u),addedge(v,v+n);
if(a[bob[u]][1]==a[bob[v]][0]) addedge(u,u+n),addedge(v+n,v);
if(a[bob[u]][1]==a[bob[v]][1]) addedge(u,u+n),addedge(v,v+n);
}
}
}
Twosat();
printf("Case #%d: ",++test);
if(flag) printf("yes\n");
else printf("no\n");
}
return 0;
}







 

hdu 4115 Eliminate the Conflict ( 2-sat )的更多相关文章

  1. HDU 4115 Eliminate the Conflict(2-sat)

    HDU 4115 Eliminate the Conflict pid=4115">题目链接 题意:Alice和Bob这对狗男女在玩剪刀石头布.已知Bob每轮要出什么,然后Bob给Al ...

  2. HDU 4115 Eliminate the Conflict(2-SAT)(2011 Asia ChengDu Regional Contest)

    Problem Description Conflicts are everywhere in the world, from the young to the elderly, from famil ...

  3. HDU 4115 Eliminate the Conflict

    2-SAT,拆成六个点. #include<cstdio> #include<cstring> #include<cmath> #include<stack& ...

  4. hdu 4115 石头剪子布(2-sat问题)

    /* 意甲冠军:石头剪子布,目前已知n周围bob会有什么,对alice限制.供u,v,w:设w=0说明a,b回合必须出的一样 否则,必须不一样.alice假设输一回合就输了,否则就赢了 解: 2-sa ...

  5. HDU 5783 Divide the Sequence(数列划分)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  6. HDU 5795 A Simple Nim(简单Nim)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  7. HDU 3496 Watch The Movie(看电影)

    HDU 3496 Watch The Movie(看电影) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] New sem ...

  8. HDU 5224 Tom and paper(最小周长)

    HDU 5224 Tom and paper(最小周长) Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d &a ...

  9. HDU 5868 Different Circle Permutation(burnside 引理)

    HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...

随机推荐

  1. UVa 11039 (排序+贪心) Building designing

    白书上的例题比较难,认真理解样例代码有助于提高自己 后面的练习题相对简单,独立思考解决问题,增强信心 题意:n个绝对值各不相同的非0整数,选出尽量多的数排成序列,使得该序列正负交错且绝对值递增. 解法 ...

  2. splay入门

    在比较了网上的几份模板的速度之后,发现指针版明显快了很多,但是一敲起来....各种不习惯...所以还是学的hzwer 的数组版... bzoj3223:维护reverse操作就可以了 #include ...

  3. kafka迁移与扩容

    参考官网site: http://kafka.apache.org/documentation.html#basic_ops_cluster_expansion https://cwiki.apach ...

  4. sql的 group by 分组;linq的 group by 分组

    先来看看 linq的,下面的一段linq 是 ,在 学生导入数据的时候,我们根据学生的手机号码和学生名称进行分组,如果有重复的,我们就筛选出来,用到了 linq的 group by,注意这里是new出 ...

  5. php字符串与正则表达式试题 Zend权威认证试题讲解

    字符串是PHP的“瑞士军刀”——作为一种Web开发语言,PHP最常打交道的就是字符串.因此对于开发者来说,处理字符串是一项非常基础的技能.幸运的是,由于PHP开发团队的努力,PHP对字符串的处理相当易 ...

  6. 别说你会用 Google 搜索

    Google 在我们的日常生活中越来越重要,很多时候,包括我在内的很多人一天也离不开 Google,但是,你真的会用 Google 吗?  PHP MySQL "Web developmen ...

  7. Mybatis学习——传递Map型参数

    Spring整合Mybatis调用 public boolean editItemSales(int i_id, int i_sales) { Map<String, Object> ma ...

  8. Android fragment源码全解析

    Fragment 相信基本上每个android developer都用过,但是知晓其原理 用的好的还是不多,今天就从源码的角度上来带着大家分析一下Fragment的源码,对fragment有了更深层次 ...

  9. 基于CentOS与VmwareStation10搭建Oracle11G RAC 64集群环境:2.搭建环境-2.5. 配置网络

    2.5. 配置网络 2.5.1. 配置网络 Oracle Rac数据库涉及到公用网络和私有网络,因此要做网络划分和IP地址规划,下表列出了要安装的RAC数据库对应的IP地址.主机名以及网络连接类型: ...

  10. IOS 单例 创建方式

    @implementation Me static Car *sharedInstance= nil;//声明一个静态对象引用并赋为nil +(Me *) sharedInstance//声明类方法( ...