Eliminate the Conflict

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1315    Accepted Submission(s): 563
Problem Description
Conflicts are everywhere in the world, from the young to the elderly, from families to countries. Conflicts cause quarrels, fights or even wars. How wonderful the world will be if all conflicts can be eliminated.

Edward contributes his lifetime to invent a 'Conflict Resolution Terminal' and he has finally succeeded. This magic item has the ability to eliminate all the conflicts. It works like this:

If any two people have conflict, they should simply put their hands into the 'Conflict Resolution Terminal' (which is simply a plastic tube). Then they play 'Rock, Paper and Scissors' in it. After they have decided what they will play, the tube should be opened and no one will have the chance to change. Finally, the winner have the right to rule and the loser should obey it. Conflict Eliminated!

But the game is not that fair, because people may be following some patterns when they play, and if the pattern is founded by others, the others will win definitely.

Alice and Bob always have conflicts with each other so they use the 'Conflict Resolution Terminal' a lot. Sadly for Bob, Alice found his pattern and can predict how Bob plays precisely. She is very kind that doesn't want to take advantage of that. So she tells Bob about it and they come up with a new way of eliminate the conflict:

They will play the 'Rock, Paper and Scissors' for N round. Bob will set up some restricts on Alice.

But the restrict can only be in the form of "you must play the same (or different) on the ith and jth rounds". If Alice loses in any round or break any of the rules she loses, otherwise she wins.

Will Alice have a chance to win?
 
Input
The first line contains an integer T(1 <= T <= 50), indicating the number of test cases.

Each test case contains several lines.

The first line contains two integers N,M(1 <= N <= 10000, 1 <= M <= 10000), representing how many round they will play and how many restricts are there for Alice.

The next line contains N integers B
1,B
2, ...,B
N, where B
i represents what item Bob will play in the i
th round. 1 represents Rock, 2 represents Paper, 3 represents Scissors.

The following M lines each contains three integers A,B,K(1 <= A,B <= N,K = 0 or 1) represent a restrict for Alice. If K equals 0, Alice must play the same on A
th and B
th round. If K equals 1, she must play different items on Ath and Bthround.
 
Output
For each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y is "yes" or "no" represents whether Alice has a chance to win.
 
Sample Input
2
3 3
1 1 1
1 2 1
1 3 1
2 3 1
5 5
1 2 3 2 1
1 2 1
1 3 1
1 4 1
1 5 1
2 3 0
 
Sample Output
Case #1: no
Case #2: yes

Hint

'Rock, Paper and Scissors' is a game which played by two person. They should play Rock, Paper or Scissors by their hands at the same time.
Rock defeats scissors, scissors defeats paper and paper defeats rock. If two people play the same item, the game is tied..

 
Source


题意:
Alice和Bob玩石头、剪刀、布,玩n局,Alice已知Bob的n局的出法,Bob给了Alice m个限制第i、j两次必须相同或不同,问Alice能否不输。


思路:
已知Bob的出法后,保证Alice不输,那每局Alice就有两种出法,问题就变为2-sat了,根据Alice每局的出法,给出限制后找到约束条件建边就够了。注意挖掘隐含的约束条件,如i、j相同,而Bob在i、j出法不同,那么Alice在i中的选择与在j中的选择只有一个交集,必须选择这个交集,选了其他的就错了。(我就卡在这个地方了)

代码:
#include <cstdio>
#include <cstring>
#define maxn 20005
#define MAXN 100005
using namespace std; int n,m,num,flag;
int bob[maxn];
int head[maxn];
int scc[maxn];
int vis[maxn];
int stack1[maxn];
int stack2[maxn];
struct edge
{
int v,next;
} g[MAXN];
int a[4][2]=
{
0,0,
1,2,
2,3,
1,3
}; void init()
{
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(scc,0,sizeof(scc));
stack1[0] = stack2[0] = num = 0;
flag = 1;
}
void addedge(int u,int v)
{
num++;
g[num].v = v;
g[num].next = head[u];
head[u] = num;
}
void dfs(int cur,int &sig,int &cnt)
{
if(!flag) return;
vis[cur] = ++sig;
stack1[++stack1[0]] = cur;
stack2[++stack2[0]] = cur;
for(int i = head[cur]; i; i = g[i].next)
{
if(!vis[g[i].v]) dfs(g[i].v,sig,cnt);
else
{
if(!scc[g[i].v])
{
while(vis[stack2[stack2[0]]] > vis[g[i].v])
stack2[0] --;
}
}
}
if(stack2[stack2[0]] == cur)
{
stack2[0] --;
++cnt;
do
{
scc[stack1[stack1[0]]] = cnt;
int tmp = stack1[stack1[0]];
if((tmp >n && scc[tmp - n] == cnt) || (tmp <= n && scc[tmp + n] == cnt)) // 注意这里的‘=’号
{
flag = false;
return;
}
}
while(stack1[stack1[0] --] != cur);
}
}
void Twosat()
{
int i,sig,cnt;
sig = cnt = 0;
for(i=0; i<n+n&&flag; i++)
{
if(!vis[i]) dfs(i,sig,cnt);
}
}
int main()
{
int i,j,t,u,v,k,test=0;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
num=0;
for(i=1; i<=n; i++)
{
scanf("%d",&bob[i]);
}
for(i=1; i<=m; i++)
{
scanf("%d%d%d",&u,&v,&k);
if(k)
{
if(a[bob[u]][0]==a[bob[v]][0]) addedge(u,v+n),addedge(v,u+n);
if(a[bob[u]][0]==a[bob[v]][1]) addedge(u,v),addedge(v+n,u+n);
if(a[bob[u]][1]==a[bob[v]][0]) addedge(u+n,v+n),addedge(v,u);
if(a[bob[u]][1]==a[bob[v]][1]) addedge(u+n,v),addedge(v+n,u);
}
else
{
if(bob[u]==bob[v])
{
addedge(u,v);
addedge(v,u);
addedge(u+n,v+n);
addedge(v+n,u+n);
}
else
{ //注意这里 只能唯一的选择一条边等价于不能选其他边
if(a[bob[u]][0]==a[bob[v]][0]) addedge(u+n,u),addedge(v+n,v);
if(a[bob[u]][0]==a[bob[v]][1]) addedge(u+n,u),addedge(v,v+n);
if(a[bob[u]][1]==a[bob[v]][0]) addedge(u,u+n),addedge(v+n,v);
if(a[bob[u]][1]==a[bob[v]][1]) addedge(u,u+n),addedge(v,v+n);
}
}
}
Twosat();
printf("Case #%d: ",++test);
if(flag) printf("yes\n");
else printf("no\n");
}
return 0;
}







 

hdu 4115 Eliminate the Conflict ( 2-sat )的更多相关文章

  1. HDU 4115 Eliminate the Conflict(2-sat)

    HDU 4115 Eliminate the Conflict pid=4115">题目链接 题意:Alice和Bob这对狗男女在玩剪刀石头布.已知Bob每轮要出什么,然后Bob给Al ...

  2. HDU 4115 Eliminate the Conflict(2-SAT)(2011 Asia ChengDu Regional Contest)

    Problem Description Conflicts are everywhere in the world, from the young to the elderly, from famil ...

  3. HDU 4115 Eliminate the Conflict

    2-SAT,拆成六个点. #include<cstdio> #include<cstring> #include<cmath> #include<stack& ...

  4. hdu 4115 石头剪子布(2-sat问题)

    /* 意甲冠军:石头剪子布,目前已知n周围bob会有什么,对alice限制.供u,v,w:设w=0说明a,b回合必须出的一样 否则,必须不一样.alice假设输一回合就输了,否则就赢了 解: 2-sa ...

  5. HDU 5783 Divide the Sequence(数列划分)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  6. HDU 5795 A Simple Nim(简单Nim)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  7. HDU 3496 Watch The Movie(看电影)

    HDU 3496 Watch The Movie(看电影) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] New sem ...

  8. HDU 5224 Tom and paper(最小周长)

    HDU 5224 Tom and paper(最小周长) Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d &a ...

  9. HDU 5868 Different Circle Permutation(burnside 引理)

    HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...

随机推荐

  1. UVa 11137 (完全背包方案数) Ingenuous Cubrency

    题意:用13.23……k3这些数加起来组成n,输出总方案数 d(i, j)表示前i个数构成j的方案数则有 d(i, j) = d(i-1, j) + d(i, j - i3) 可以像01背包那样用滚动 ...

  2. Codeforces 443 B Kolya and Tandem Repeat【暴力】

    题意:给出一个字符串,给出k,可以向该字符串尾部添加k个字符串,求最长的连续重复两次的子串 没有想出来= =不知道最后添加的那k个字符应该怎么处理 后来看了题解,可以先把这k个字符填成'*',再暴力枚 ...

  3. 一招解决OpenERP8.0安装旧版模块报错

    有喜欢尝鲜的网友开始玩8.0了,可是版本还没发布,社区的很多特别好的模块还没有升级到8,所以经常碰到模块无法安装的问题. No module name osv 网友提出将模块的 from osv im ...

  4. github.io hexo 安装

    /***************************************************************** * github.io hexo 安装 * 说明: * 本文记录h ...

  5. HDU 5316 Magician (线段树,单值修改,微变形)

    题意:给一个初始序列A[1,n],第j个数字代表精灵j的power值,有两种操作:(1)查询区间[L,R] (2)修改某个精灵的power值. 但,查询的是区间[L,R]中一个美丽子序列sub[l,r ...

  6. 常见SQLException异常

    ORA-00904:  invalid column name 无效列名 ORA-00942:  table or view does not exist 表或者视图不存在 ORA-01400:  c ...

  7. dede栏目调用大全

    A:侧边栏常用的当前栏目的父栏目调用(5.7) 1.在include/common.inc.php增加函数 function getTopCategoryName($cid=0) { global $ ...

  8. 【英语】Bingo口语笔记(27) - 如何培养口语语感

  9. 定时任务处理-Quartz

    Quartz Scheduler,定时任务 Quartz是一个作业调度系统(a job scheduling system),负责在约定的时间到达时执行(或通知)其他软件控制.是一个Java的定时任务 ...

  10. Hibernate-Criteria Queries

    1.实例 接口org.hibernate.Criteria针对特殊持久层类进行查询,Sesion是Criteria的工厂: Criteria crit = sess.createCriteria(Ca ...