Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1553    Accepted Submission(s): 691

Problem Description
F(x,m) 代表一个全是由数字x组成的m位数字。请计算,以下式子是否成立:

F(x,m) mod k ≡ c

 
Input
第一行一个整数T,表示T组数据。
每组测试数据占一行,包含四个数字x,m,k,c

1≤x≤9

1≤m≤1010

0≤c<k≤10,000

 
Output
对于每组数据,输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式。
 
Sample Input
3
1 3 5 2
1 3 5 1
3 5 99 69
 
Sample Output
Case #1:
No
Case #2:
Yes
Case #3:
Yes

Hint

对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是”No”,而第二组测试数据中满足如上公式,所以答案是 “Yes”。

 
【题意】
 
 
【思路】数的快速幂
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
long long int x,m,k,c;
long long int pow(long long int a,long long int n,long long int mod)//快速幂
{
long long int ans=;
while(n)
{
if(n&) ans=ans*a%mod;
n>>=;
a=a*a%mod;
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
int cas=;
while(t--)
{
printf("Case #%d:\n",cas++);
scanf("%lld%lld%lld%lld",&x,&m,&k,&c);
int p=pow(,m,k);
if(x*p%k==(*c+x)%k) printf("Yes\n");
else printf("No\n");
}
return ;
}
 

All X_数的快速幂的更多相关文章

  1. [NOIP2003普及组]麦森数(快速幂+高精度)

    [NOIP2003普及组]麦森数(快速幂+高精度) Description 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998 ...

  2. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

  3. 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂

    洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...

  4. TZOJ 4839 麦森数(模拟快速幂)

    描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有9 ...

  5. bzoj 3930: [CQOI2015]选数【快速幂+容斥】

    参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...

  6. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  7. NOIP2003 普及组 洛谷P1045 麦森数 (快速幂+高精度)

    有两个问题:求位数和求后500位的数. 求位数:最后减去1对答案的位数是不影响的,就是求2p的位数,直接有公式log10(2)*p+1; 求后500位的数:容易想到快速幂和高精度: 1 #includ ...

  8. 洛谷 P1045 【麦森数】快速幂

    不用快速幂,压位出奇迹! 本人是个蒟蒻,不太熟悉快速幂,这里给大家介绍一种压位大法. 让我们来分析一下题目,第一位是送分的,有一个专门求位数的函数:n*log10(2)+1. 然后题目中p<=3 ...

  9. 欧拉函数phic以及超大数的快速幂

    题目:求a^b*c%mod; 其中b<=10^100000; 是不是很大..... /*当你要计算 A^B%C的时候 因为此题中的B很大,达到10^100000,所以我们应该联想到降幂公式. 降 ...

随机推荐

  1. 你不知道的JavaScript-- 事件流与事件处理

    转载:http://blog.csdn.net/i10630226/article/details/48970971 1. 事件处理 1.1. 绑定事件方式 (1)行内绑定 语法: //最常用的使用方 ...

  2. windows系统下Tomcat与Apache服务器集成

    说明:此文是看书真实试验成功的,书中提到了不同版本不兼容的问题,但是很荣幸我没碰到,此例可供参考. 本文假设你已经有了java环境和tomcat,你已经熟悉tomcat的应用. Jdk 1.7.0_5 ...

  3. RHEL 6.3安装(超级详细图解教程)[转载]

        附:RHEL6.3下载地址 32位:http://rhel.ieesee.net/uingei/rhel-server-6.3-i386-dvd.iso 64位:http://rhel.iee ...

  4. 前端必须掌握30个CSS3选择器

    也许你已经学会了CSS的三个简单常用的选择器:#ID,.class,标签选择器,可是这些就足够了吗?随着CSS3的到来,作为前端开发者需要掌握下面三十个基本的选择器,这样才可以在平时开发中得心用手. ...

  5. mac 下隐藏和显示文件

    显示:defaults write com.apple.finder AppleShowAllFiles -bool true隐藏:defaults write com.apple.finder Ap ...

  6. [开发笔记]-sqlite数据库在使用时遇到的奇葩问题记录

    有时候做些简单的项目一般都会选择sqlite数据库,优点有很多,这里就不详细说了. 在此主要记录一些平时在使用时遇到的问题及解决方法.希望能对大家有所帮助. --------------------- ...

  7. HighAvailability和LoadBalancer

    HighAvailability                         LoadBalancer 红帽RHCS                                lvs(三种工作 ...

  8. ios 8.4 Xcode6.4 设置LaunchImage图片

    Step1 1.点击Image.xcassets 进入图片管理,然后右击,弹出"New Launch Image" 2.如图,右侧的勾选可以让你选择是否要对ipad,横屏,竖屏,以 ...

  9. 关于oc运行时 isa指针详解

    Cocoa框架是iOS应用程序的基础,了解Cocoa框架,对开发iOS应用有很大的帮助. 1.Cocoa是什么? Cocoa是OS X和 iOS操作系统的程序的运行环境. 是什么因素使一个程序成为Co ...

  10. 获取UIColor中的RGB值(本人亲测多个获取RGB值的方法,这个最有效)

    在自己研发的项目个人项目中,碰到一个从颜色中获取RGB值的需求. 在网上找了许久,也有一些方法可以获取RGB值,但不能获取黑白以及灰色的值(他们是非RGB颜色空间,不清楚什么意思,反正亲测确实获取不了 ...