Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1553    Accepted Submission(s): 691

Problem Description
F(x,m) 代表一个全是由数字x组成的m位数字。请计算,以下式子是否成立:

F(x,m) mod k ≡ c

 
Input
第一行一个整数T,表示T组数据。
每组测试数据占一行,包含四个数字x,m,k,c

1≤x≤9

1≤m≤1010

0≤c<k≤10,000

 
Output
对于每组数据,输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式。
 
Sample Input
3
1 3 5 2
1 3 5 1
3 5 99 69
 
Sample Output
Case #1:
No
Case #2:
Yes
Case #3:
Yes

Hint

对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是”No”,而第二组测试数据中满足如上公式,所以答案是 “Yes”。

 
【题意】
 
 
【思路】数的快速幂
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
long long int x,m,k,c;
long long int pow(long long int a,long long int n,long long int mod)//快速幂
{
long long int ans=;
while(n)
{
if(n&) ans=ans*a%mod;
n>>=;
a=a*a%mod;
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
int cas=;
while(t--)
{
printf("Case #%d:\n",cas++);
scanf("%lld%lld%lld%lld",&x,&m,&k,&c);
int p=pow(,m,k);
if(x*p%k==(*c+x)%k) printf("Yes\n");
else printf("No\n");
}
return ;
}
 

All X_数的快速幂的更多相关文章

  1. [NOIP2003普及组]麦森数(快速幂+高精度)

    [NOIP2003普及组]麦森数(快速幂+高精度) Description 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998 ...

  2. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

  3. 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂

    洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...

  4. TZOJ 4839 麦森数(模拟快速幂)

    描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有9 ...

  5. bzoj 3930: [CQOI2015]选数【快速幂+容斥】

    参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...

  6. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  7. NOIP2003 普及组 洛谷P1045 麦森数 (快速幂+高精度)

    有两个问题:求位数和求后500位的数. 求位数:最后减去1对答案的位数是不影响的,就是求2p的位数,直接有公式log10(2)*p+1; 求后500位的数:容易想到快速幂和高精度: 1 #includ ...

  8. 洛谷 P1045 【麦森数】快速幂

    不用快速幂,压位出奇迹! 本人是个蒟蒻,不太熟悉快速幂,这里给大家介绍一种压位大法. 让我们来分析一下题目,第一位是送分的,有一个专门求位数的函数:n*log10(2)+1. 然后题目中p<=3 ...

  9. 欧拉函数phic以及超大数的快速幂

    题目:求a^b*c%mod; 其中b<=10^100000; 是不是很大..... /*当你要计算 A^B%C的时候 因为此题中的B很大,达到10^100000,所以我们应该联想到降幂公式. 降 ...

随机推荐

  1. nyoj-----42一笔画问题

    一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下 ...

  2. java操作字符串,重点是记录一次使用replaceAll对字符串的操作

    符串常用操作(String类) 字符串查找 String提供了两种查找字符串的方法,即indexOf与lastIndexOf方法. 1.indexOf(String s) 该方法用于返回参数字符串s在 ...

  3. Java网络通信

    一.基本概念 1.网络程序: 能够接受另一台计算机发送过来的数据或者能够向另一台计算机发送数据的程序叫做网络程序. 2.IP 能够在网络中唯一标示一台主机的编号就是IP 3.端口号 16位数字表示 4 ...

  4. C#.web 打开PDF

    转自:http://blog.163.com/red_guitar@126/blog/static/11720612820112483221665/ string fileName = "2 ...

  5. SQL Server数据库(作业讲解和复习)

    --第一题 查询Student表中的所有记录的Sname.Ssex和Class列.select Sname,Ssex,Class from student --第二题 查询教师所有的单位即不重复的De ...

  6. C语言知识整理(3):内存管理(详细版)

    在计算机系统,特别是嵌入式系统中,内存资源是非常有限的.尤其对于移动端开发者来说,硬件资源的限制使得其在程序设计中首要考虑的问题就是如何有效地管理内存资源.本文是作者在学习C语言内存管理的过程中做的一 ...

  7. backbonejs中的集合篇(一)

    一:集合概念 集合是多个模型,如果把模型model理解为表结构中的行,那么集合collection就是一张表,由多个行组成.我们经常需要用集合来组织和管理多个模型. 二:创建集合 1:扩展Backbo ...

  8. 3D旋转动画

    <!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head>    < ...

  9. Aeroplane chess(HDU 4405)

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  10. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...