原创文章,转载请注明:八皇后问题-回溯法(MATLAB) By Lucio.Yang

1.问题描述

  八皇后问题是十九世纪著名数学家高斯于1850年提出的。问题是:在8*8的棋盘上摆放8个皇后,使其不能互相攻击,即任意的两个皇后不能处在同意行,同一列,或同意斜线上。

2.matlab代码

function PlaceQueen(row,stack,N)%回溯法放置皇后
if row>N
PrintQueen(N,stack);%打印棋盘
else
for col=1:N
stack(row)=col;
if row==1||Conflict(row,col,N,stack)%检测是否冲突
PlaceQueen(row+1,stack,N);
end
stack(row)=0;
end
end
%子函数:检测冲突
function result=Conflict(row,col,N,stack)%检测是否冲突
result=1;
for i=1:row-1
if stack(i)~=0
if ((stack(i)==col)||(abs(row-i)==abs(col-stack(i))))%是否产生冲突:在同一直线,斜线上
result=0;
break;
end
if result==0
break;
end
end
end
%子函数:打印棋盘信息
function PrintQueen(N,stack)
global solutionNum; %定义全局变量,来累积方法数
solutionNum=solutionNum+1;
disp(['第',num2str(solutionNum),'种方法:'])
for i=1:N
for j=1:N
if j==stack(i)
fprintf('1 ')
else
fprintf('0 ')
end
end
fprintf('\n')
end

PlaceQueen.m

clear all
clc global solutionNum;
solutionNum=0;%全局变量记录方法数
N=8;%皇后个数
%matrix=zeros(N);%存储皇后位置信息
stack=[0 0 0 0 0 0 0 0];
PlaceQueen(1,stack,N)%调用放置方法

queen.m

八皇后问题-回溯法(MATLAB)的更多相关文章

  1. 八皇后,回溯与递归(Python实现)

    八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩 ...

  2. HDU 2553 n皇后问题(回溯法)

     DFS Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Description ...

  3. 算法入门经典-第七章 例题7-4-1 拓展 n皇后问题 回溯法

    实际上回溯法有暴力破解的意思在里面,解决一个问题,一路走到底,路无法通,返回寻找另   一条路. 回溯法可以解决很多的问题,如:N皇后问题和迷宫问题. 一.概念 回溯算法实际类似枚举的搜索尝试过程,主 ...

  4. N皇后问题 回溯法 C/C++

    一:问题描述 N皇后问题(含八皇后问题的拓展,规则同四皇后):在N*N的棋盘上,放置N个皇后,要求每一横行每一列,每一对角线上均只能放置一个皇后,求解可能的方案及方案数. 二:代码及结果如下 #inc ...

  5. N皇后问题--回溯法

    1.引子 中国有一句古话,叫做“不撞南墙不回头",生动的说明了一个人的固执,有点贬义,但是在软件编程中,这种思路确是一种解决问题最简单的算法,它通过一种类似于蛮干的思路,一步一步地往前走,每 ...

  6. noj算法 8皇后打印 回溯法

    描述: 输出8皇后问题所有结果. 输入: 没有输入. 输出: 每个结果第一行是No n:的形式,n表示输出的是第几个结果:下面8行,每行8个字符,‘A’表示皇后,‘.’表示空格.不同的结果中,先输出第 ...

  7. JAVA实现N皇后问题(回溯法)

    package com.leetCode; /** * Follow up for N-Queens problem. Now, instead outputting board configurat ...

  8. 8皇后-----回溯法C++编程练习

    /* * 八皇后问题回溯法编程练习 * 在8×8的棋盘上,放置8个皇后,两个皇后之间不能两两攻击 * 也即,直线,垂直45度.135度方向不能出现两个皇后 * * copyright Michael ...

  9. 八皇后问题——列出所有的解,可推至N皇后

    <数据结构>--邓俊辉版本 读书笔记 今天学习了回溯法,有两道习题,一道N皇后,一道迷宫寻径.今天,先解决N皇后问题.由于笔者 擅长java,所以用java重现了八皇后问题. 注意是jav ...

随机推荐

  1. display的table和cell外加table-layout:fixed等分布局,外加换行,word-wrap:break-word

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. python <tab>自动补全

    1.获取python目录[我使用的是64位ubuntu系统] [~$]python Python 2.7.3 (default, Apr 10 2013, 06:20:15) [GCC 4.6.3] ...

  3. Android ROM 制作教程

    本文来自: 起点手机论坛 具体文章參考:http://www.qdppc.com/forum.php?mod=viewthread&tid=43751&fromuid=1 1.Andr ...

  4. WebPart设置杂项

    CS写法:                    } 后台写法:  public D_ZoneLimitView WebPart { get; set; }

  5. 【Java并发编程】并发编程大合集-值得收藏

    http://blog.csdn.net/ns_code/article/details/17539599这个博主的关于java并发编程系列很不错,值得收藏. 为了方便各位网友学习以及方便自己复习之用 ...

  6. Deep Learning(深度学习)学习笔记整理系列之(七)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  7. 思考----拒绝单纯copy

    工作4个多月以来感触最深的是: 做事情的时候遇到不会的可以上网查或者问别人,但是获取到的知识不能只是单纯的copy过来使用达到要求就ok, 更重要的是事后等有空了一定要仔细研究学习,使知识网络完整,这 ...

  8. svn的使用总结(待补充)

    1.直接选择文件右键--diff比较的是(本地上次与svn同步的文件)与工作区的比较.(每次更新后,会自动备份本次更新的文件) 2.若是要跟 svn最新版本比较的话,可以选择版本找到对应文件,点击sh ...

  9. Linux各个发行版本的介绍, 以及VirtualBox+CentOS的安装步骤

    Linux和Unix系统有哪些主要的发行版本 Unix: (非开源传统商业操作系统) IBM AIX, HP HP-UX, Sun Solaris,等 各家硬件厂商的发行版本, 往往是和自家的硬件设备 ...

  10. jquery.qrcode二维码插件生成彩色二维码

    jquery.qrcode.js 是居于jquery类库的绘制二维码的插件,用它来实现二维码图形渲染支持canvas和table两种绘图方式. (jquery.qrcode.js 设置显示方式为tab ...