Code

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 597    Accepted Submission(s): 230

Problem Description
WLD likes playing with codes.One day he is writing a function.Howerver,his computer breaks down because the function is too powerful.He is very sad.Can you help him?
The function:
int calc {      int res=0;      for(int i=1;i<=n;i++)          for(int j=1;j<=n;j++)          {              res+=gcd(a[i],a[j])*(gcd(a[i],a[j])-1);              res%=10007;          }      return res;
}
 
Input
There are Multiple Cases.(At MOST 10)
For each case:
The first line contains an integer N(1≤N≤10000).
The next line contains N integers a1,a2,...,aN(1≤ai≤10000).
 
Output
For each case:
Print an integer,denoting what the function returns.
 
Sample Input
5
1 3 4 2 4
 
Sample Output
64

Hint

gcd(x,y) means the greatest common divisor of x and y.

题意:就是给你一系列数,让找两个数最大公约数x,求所有x(x-1)的和;其实就是一个容斥,对于每给的一个数,找里面因子出现的次数;

现在我们的任务就是给你一个x为gcd,找以x为gcd出现的次数,最多有count[x]^2次,需要减去多考虑的也就是 2x, 3x, 4x...出现的次数;

f[i]代表以i为gcd出现的次数;

/**********/

首先的思路是,考虑每个数对最终答案的贡献。

那么我们就要求出:对于每个数,以它为 gcd 的数对有多少对。

显然,对于一个数 x ,以它为 gcd 的两个数一定都是 x 的倍数。如果 x 的倍数在数列中有 k 个,那么最多有 k^2 对数的 gcd 是 x 。

同样显然的是,对于两个数,如果他们都是 x 的倍数,那么他们的 gcd 一定也是 x 的倍数。

所以,我们求出 x 的倍数在数列中有 k 个,然后就有 k^2 对数满足两个数都是 x 的倍数,这 k^2 对数的 gcd,要么是 x ,要么是 2x, 3x, 4x...

并且,一个数是 x 的倍数的倍数,它就一定是 x 的倍数。所以以 x 的倍数为 gcd 的数对,一定都包含在这 k^2 对数中。

如果我们从大到小枚举 x ,这样计算 x 的贡献时,x 的多倍数就已经计算完了。我们用 f(x) 表示以 x 为 gcd 的数对个数。

那么 f(x) = k^2 - f(2x) - f(3x) - f(4x) ... f(tx)             (tx <= 10000, k = Cnt[x])

这样枚举每个 x ,然后枚举每个 x 的倍数,复杂度是用调和级数计算的,约为 O(n logn)。

/*********/

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
typedef long long LL;
const int MAXN=10010;
const int MOD=10007;
int cnt[MAXN],f[MAXN];
int main(){
int N;
while(~scanf("%d",&N)){
int x;
mem(cnt,0);mem(f,0);
for(int j=0;j<N;j++){
scanf("%d",&x);
for(int i=1;i<=(int)sqrt(x);i++){
if(x%i==0){
cnt[i]++;
if(x/i!=i)cnt[x/i]++;
}
}
}
int ans=0,temp=0;
for(int i=10000;i>=1;i--){
f[i]=cnt[i]*cnt[i]%MOD;
for(int j=i*2;j<=10000;j+=i)
f[i]=(f[i]-f[j]+MOD)%MOD;
temp=i*(i-1)%MOD;
ans=(ans+f[i]*temp%MOD+MOD)%MOD;
}
printf("%d\n",ans);
}
return 0;
}

  

Code(容斥,好题)的更多相关文章

  1. hdu1796:容斥入门题

    简单的容斥入门题.. 容斥基本的公式早就知道了,但是一直不会写. 下午看到艾神在群里说的“会枚举二进制数就会容斥”,后来发现还真是这样.. 然后直接贴代码了 #include <iostream ...

  2. hdu 1796 How many integers can you find 容斥第一题

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. 再探容斥好题——ROOK

    这个时候考过:安师大附中集训 Day2 当时看shadowice1984的做法,但是没有亲自写,,, 雅礼集训考试的时候鼓捣半天,被卡常到80pts,要跑9s 卡不动. 正解实际是: 3重容斥 1.随 ...

  4. HDU 6106 17多校6 Classes(容斥简单题)

    Problem Description The school set up three elective courses, assuming that these courses are A, B, ...

  5. 【洛谷】1600:天天爱跑步【LCA】【开桶】【容斥】【推式子】

    P1600 天天爱跑步 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个 ...

  6. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  7. 【BZOJ5287】[HNOI2018]毒瘤(动态规划,容斥)

    [BZOJ5287][HNOI2018]毒瘤(动态规划,容斥) 题面 BZOJ 洛谷 题解 考场上想到的暴力做法是容斥: 因为\(m-n\le 10\),所以最多会多出来\(11\)条非树边. 如果就 ...

  8. 【Luogu4707】重返现世(min-max容斥)

    [Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...

  9. 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

    [LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...

  10. HDU 1796 How many integers can you find 【容斥】

    <题目链接> 题目大意: 给你m个数,其中可能含有0,问有多少小于n的正数能整除这个m个数中的某一个. 解题分析: 容斥水题,直接对这m个数(除0以外)及其组合的倍数在[1,n)中的个数即 ...

随机推荐

  1. chrome 、 火狐等浏览器对空格符&nbsp; 解析不同,页面显示不一致

    最近初学web,从头开始,菜鸟级别,遇到的小问题记录下来. 网上资料说 空格在ie.firefox.chrome浏览器上显示的效果不太一样,主要是前面的空格宽度不同,这可能是因为不同的浏览器会有不同的 ...

  2. Linux Shell 学习笔记 一 目录结构

    以Red Hat Enterprise Linux 各版本为例,RHEL中目录具体作用如下, /bin       存放普通用户使用的命令 /sbin     存放管理员可以执行的命令 /home   ...

  3. iOS中UIWebView使用JS交互 - 机智的新手

    iOS中偶尔也会用到webview来显示一些内容,比如新闻,或者一段介绍.但是用的不多,现在来教大家怎么使用js跟webview进行交互. 这里就拿点击图片获取图片路径为例: 1.测试页面html & ...

  4. spring MVC中文乱码相关总结

    总结几种方式,都使用的话能解决大多数乱码的情况 1.所有页面使用 <%@page language="java" pageEncoding="UTF-8" ...

  5. JAVA语言规范和API网址

    Java语言规范: http://docs.oracle.com/javase/specs/ Java API: http://docs.oracle.com/javase/8/docs/api/in ...

  6. C++ 面向对象学习1

    #include "stdafx.h" #include <iostream> //不要遗漏 否则不能使用cout using namespace std; class ...

  7. delphi 文件夹权限设置(执行一个小脚本的笨办法)

    如题,研究了一天,也没再网上找到比较好的方式,自己做了一个.方法如下: 1.创建一个 cmd 命令文件.2.调用该命令. 代码如下:   S:='echo y|cacls h: /t /c /g ev ...

  8. Windows平台下C++插件系统实现的几个关键技术问题及其解决思路

    根据我的实践,在Windows平台下设计并实现一个C++插件系统,需要解决几个关键技术问题.下面我谈谈需要解决的几个关键技术问题以及我想到的简单的解决思路.由于我主要专注于Windows平台C++程序 ...

  9. 【Java线程】Lock、Condition

    http://www.infoq.com/cn/articles/java-memory-model-5  深入理解Java内存模型(五)——锁 http://www.ibm.com/develope ...

  10. 2014-CVTE网测部分软件技术测试题及答案

    1.叉树的先序遍历序列和后序遍历序列正好相反,则该二叉树满足的条件是(D) A.空或只有一个结点 B.高度等于其结点数 C.该二叉树是完全二叉树 D.所有结点无右孩子 应该是二叉树的每个结点都只有一个 ...