Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of -p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF.
Each test case contains two lines.
The First line of each test case is N ( ≤ N ≤ ) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [, ].

Output

For each test case, output the probabilty in a single line with the precision to  digits after the decimal point.

Sample Input

 0.5

 0.5
 

Sample Output

0.5000000
0.2500000

Source

 

又是一题矩阵乘法……

这题很显然了, n个雷,分别在 a[1]...a[n] ,走一步概率为 p ,走两步概率为 1-p ,一开始在 1 号位置,问安全到达终点的概率。

显然,如果k 号位有雷,那么安全通过这个雷只可能是在 k-1 号位选择走两步到 k+1 号位。因此,可以得到如下结论:在第 i 个雷的被处理掉的概率就是从 a[i-1]+1 号位到 a[i] 号位的概率。于是,可以用 1 减去就可以求出安全通过第 i 个雷的概率,最后乘起来即可,比较悲剧的是数据很大,所以需要用到矩阵快速幂……

类似斐波那契数列,有ans[i]=p*ans[i-1]+(1-p)*ans[i-2] ,构造矩阵为

|p  1-p |     ans[i-1]   ans[i]

|1  0    |     ans[i-2]  ans[i-1] 

 //ans[i]=p*ans[i-1]+(1-p)*ans[i-2]
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<stdlib.h>
using namespace std;
#define N 16
int n;
double p;
int a[N]; struct Matrix
{
double m[][];
Matrix()
{
memset(m,,sizeof(m));
for(int i=;i<;i++)
m[i][i]=;
}
}; Matrix Mul(Matrix a,Matrix b)
{
Matrix res;
int i,j,k;
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
res.m[i][j]=;
for(int k=;k<;k++)
{
res.m[i][j]=res.m[i][j]+(a.m[i][k]*b.m[k][j]);
}
}
}
return res;
}
Matrix fastm(Matrix a,int b)
{
Matrix res;
while(b)
{
if(b&)
res=Mul(res,a);
a=Mul(a,a);
b>>=;
}
return res;
} int main()
{
while(scanf("%d%lf",&n,&p)!=EOF)
{
for(int i=;i<=n;i++) scanf("%d",&a[i]); sort(a+,a+n+);
double ans=;
Matrix tmp;
tmp.m[][]=p;
tmp.m[][]=-p;
tmp.m[][]=;
tmp.m[][]=; Matrix cnt;
cnt=fastm(tmp,a[]-);
ans*=(-cnt.m[][]);
for(int i=;i<=n;i++)
{
if(a[i]==a[i-]) continue;
cnt=fastm(tmp,a[i]-a[i-]-);
ans*=(-cnt.m[][]);
} printf("%.7lf\n",ans); }
return ;
}
 

poj 3744 Scout YYF I (矩阵)的更多相关文章

  1. poj 3744 Scout YYF I (矩阵快速幂 优化 概率dp)

    题目链接 分析&&题意来自 : http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710586.html 题意: 在一条不满地雷的 ...

  2. poj 3744 Scout YYF I(递推求期望)

    poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...

  3. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  4. poj 3744 Scout YYF I(概率dp,矩阵优化)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5020   Accepted: 1355 Descr ...

  5. poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)

    F - Scout YYF I Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  6. POJ 3744 Scout YYF I

    分段的概率DP+矩阵快速幂                        Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  7. poj 3744 Scout YYF I (可能性DP+矩阵高速功率)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5062   Accepted: 1370 Description YYF i ...

  8. POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)

    http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...

  9. POJ 3744 Scout YYF I (概率dp+矩阵快速幂)

    题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...

随机推荐

  1. VS2010旗舰版安装图解

    微软公布了最新的 Visual Studio 2010 软件开发编程平台及 .Net Framework 4 框架.这次 VisualStudio 2010 包含 Professional 专业版.P ...

  2. 【Android】添加菜单和监听菜单方法详解

    添加菜单 可以在onCreateOptionsMenu或者onPrepareOptionsMenu方法中来添加菜单 代码添加: menu.add((int groupId, int itemId, i ...

  3. HTML5硕士学习笔记

    如今,该集团经过培训的同事给大家HTML5,他出席了两个5训练日,大概过一次给我们,在一个很形象.同事们更感兴趣的是. 课后共享所有的课件.在热情的新技术,我想工作有一个良好的早晨,我决定重新学习课件 ...

  4. Java学习笔记——JDBC读取properties属性文件

    Java 中的 properties 文件是一种配置文件,主要用于表达配置信息,文件类型为*.properties,格式为文本文件. 文件的内容是格式是"键=值"(key-valu ...

  5. js身份证验证代码

    var idCardNoUtil = { provinceAndCitys: {11:"北京",12:"天津",13:"河北",14:&qu ...

  6. Ajax&XMLHttpRequest

    XMLHttpRequest 简单省力的方法 将文件编码成base64通过Ajax上传 HTML5学习之FileReader接口 HTML5学习之FileReader接口 通过Ajax方式上传文件,使 ...

  7. 网页、JavaScript 数据类型

    JavaScript 数据类型 一.基本数据类型: 字符串.数字.布尔.日期和时间 JavaScript 拥有动态类型 JavaScript 拥有动态类型.这意味着相同的变量可用作不同的类型: 1 v ...

  8. OD: Heap in Windows 2K & XP SP1

    Windows 堆溢出 MS 没有完全公开 Windows 的堆管理细节,目前对 Windows 堆的了解主要基于技术狂热者.黑客.安全专家.逆向工程师等的个人研究成果. 目前 Windows NT4 ...

  9. 万事开头难,用HTML写的第一个界面,收获颇多

        很开心跟了叶老师学习和做项目,基础不好,前期他会帮你安排好学习路线和计划.前期没有项目做,叶老师先让我先学习jQuery,给我推荐了一些网站,叫我一边学习,一边写博客.其实很早就有想写博客的想 ...

  10. boost

    参考博客 http://www.cnblogs.com/lidabo/p/3805487.html http://www.cppblog.com/Robertxiao/archive/2013/01/ ...