Desert King
Time Limit: 3000MS   Memory Limit: 65536K
     

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

 
题目大意:构建最优比率生成树
每条边的花费=连接两点的高度差,距离=平面两点间距离(官方名称:欧几里得距离)
最小化 ∑ 每条边的花费/距离
01分数规划+prim
prim构造最小生成树的标准是 w=这条边的花费-这条边的距离*二分的mid
最后判断选用边的w是否大于0
01分数规划就用在这里
然而初学,并没有想到,一直在思考怎么在prim过程中套01规划
再就是判断式子>0,移动下界,否则移动上界
这是固定的,与最终求最大最小值没有关系
受了刚做的一道01规划题影响http://www.cnblogs.com/TheRoadToTheGold/p/6546981.html
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define eps 1e-6
using namespace std;
int n;
double l,r,mid,ans,p;
double x[],y[],h[],dis[][],cost[][],minn[],w[][];
bool v[];
bool check(double k)
{
p=;
memset(v,,sizeof(v));
for(int i=;i<=n;i++) minn[i]=w[][i];
minn[]=;v[]=true;
int s=n-;
while(s--)
{
int point;double d=;
for(int i=;i<=n;i++)
if(!v[i]&&minn[i]<d)
{
point=i;d=minn[i];
}
p+=d;v[point]=true;
for(int i=;i<=n;i++)
if(!v[i]&&w[point][i]<minn[i])
minn[i]=w[point][i];
}
return p>=;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
if(!n) return ;
for(int i=;i<=n;i++) scanf("%lf%lf%lf",&x[i],&y[i],&h[i]);
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
{
dis[i][j]=sqrt(pow(abs(x[i]-x[j]),)+pow(abs(y[i]-y[j]),));
cost[i][j]=abs(h[i]-h[j]);
}
l=,r=;ans=;
while(fabs(l-r)>eps)
{
mid=(l+r)/;
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
w[i][j]=w[j][i]=cost[i][j]-mid*dis[i][j];
if(check(mid))
{
ans=mid;
l=mid+eps;
}
else r=mid-eps;
}
printf("%.3lf\n",ans);
} }

poj 2728 Desert King (最优比率生成树)的更多相关文章

  1. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  2. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  3. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  4. POJ 2728 Desert King (最优比率树)

    题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...

  5. POJ 2728 Desert King (最优比例生成树)

    POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...

  6. POJ2728 Desert King —— 最优比率生成树 二分法

    题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Subm ...

  7. Desert King(最优比率生成树)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22717   Accepted: 6374 Desc ...

  8. 【POJ2728】Desert King 最优比率生成树

    题目大意:给定一个 N 个点的无向完全图,边有两个不同性质的边权,求该无向图的一棵最优比例生成树,使得性质为 A 的边权和比性质为 B 的边权和最小. 题解:要求的答案可以看成是 0-1 分数规划问题 ...

  9. POJ2728 Desert King 最优比率生成树

    题目 http://poj.org/problem?id=2728 关键词:0/1分数规划,参数搜索,二分法,dinkelbach 参考资料:http://hi.baidu.com/zzningxp/ ...

随机推荐

  1. imooc-c++学习感悟

    imooc--慕课网c++课程链接:[课程链接](http://www.imooc.com/course/list?c=C+puls+puls) Imooc 慕课网c++学习感悟 1.课程名称:c++ ...

  2. sqlserver结束和监视耗时的sql

    在对象资源管理器中右击服务器地址选择“活动和监视器”. 点击最近耗费大量资源的查询

  3. week3c:个人博客作业

    程序测试: 一个基本的测试. 在Visual Studio 2013 中使用C++单元测试 操作如下: 这是我学到的过程. 有复杂程序的测试.以后有时间再弄.

  4. My复利计算程序测试报告

    My复利计算程序测试报告 4.0 单元测试----------------------------- 要求: 对我们和复利计算程序,写单元测试. 有哪些场景? 期待的返回值 写测试程序. 运行测试. ...

  5. 关于对JSON.parse()与JSON.stringify()的理解

    JSON.parse()与JSON.stringify()的区别   JSON.parse()[从一个字符串中解析出json对象] 例子: //定义一个字符串 var data='{"nam ...

  6. Vue.js——60分钟browserify项目模板快速入门

    概述 在之前的一系列vue.js文章,我们都是用传统模式引用vue.js以及其他的js文件的,这在开发时会产生一些问题. 首先,这限定了我们的开发模式是基于页面的,而不是基于组件的,组件的所有代码都直 ...

  7. mysql 时间格式化参数表笔记

    DATE_FORMAT() 函数用于以不同的格式显示日期/时间数据. 语法: DATE_FORMAT(date,format) 实例: DATE_FORMAT(NOW(),'%b %d %Y %h:% ...

  8. [转帖]Intel为何吊打AMD,先进半导体工艺带来什么?

    Intel为何吊打AMD,先进半导体工艺带来什么? 2016-3-10 15:38  |  作者:Strike   |  关键字:超能课堂,半导体工艺,CPU制程 分享到       按照摩尔定律的发 ...

  9. 校园网突围之路由器开wifi__windows版

    之前有写过web版的登录介绍,但是有此人给我发邮件说web版的太麻烦,每次都要有内网才可以.在此我要说下web版的好处. 1.不用安装环境,并不是每个人电脑上都需要安装开发环境,你可以说你硬盘空间大, ...

  10. git bash使用(markdown版)

    前言 我是通过这个来学习的.个人愚笨,琢磨了半天,终于搞通了,醉了醉了,以前一直使用svn,用git确实有点水土不服.本文以如何使用git为主来展开,不涉及太多理论. git是分布式的版本管理.什么叫 ...