最小费用流spfa算法模板(pascal)
以前写过,现在的码风与以前有些变化,主要是用数组模拟邻接表存图,以前是用指针存图。
以前的博文:http://www.cnblogs.com/Currier/p/6387732.html
洛谷可评测。
传送门:https://www.luogu.org/problem/show?pid=3381
program rrr(input,output);
const
inf=;
type
etype=record
t,c,w,next,rev:longint;
end;
var
e:array[..]of etype;
a,fre,frv,q,dis:array[..]of longint;
inq:array[..]of boolean;
n,m,s,t,i,j,x,y,c,w,max,ans,cnt,f:longint;
procedure add(x,y,c,w:longint);
begin
inc(cnt);e[cnt].t:=y;e[cnt].c:=c;e[cnt].w:=w;e[cnt].next:=a[x];a[x]:=cnt;
end;
function min(a,b:longint):longint;
begin
if a<b then exit(a) else exit(b);
end;
procedure spfa;
var
h,t:longint;
begin
for i:= to n do dis[i]:=inf;
fillchar(inq,sizeof(inq),false);
h:=;t:=;q[]:=s;dis[s]:=;inq[s]:=true;
while h<>t do
begin
inc(h);if h> then h:=;
i:=a[q[h]];
while i<> do
begin
if (e[i].c>) and (dis[q[h]]+e[i].w<dis[e[i].t]) then
begin
dis[e[i].t]:=dis[q[h]]+e[i].w;
frv[e[i].t]:=q[h];fre[e[i].t]:=i;
if not inq[e[i].t] then
begin
inc(t);if t> then t:=;
q[t]:=e[i].t;inq[e[i].t]:=true;
end;
end;
i:=e[i].next;
end;
inq[q[h]]:=false;
end;
end;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
readln(n,m,s,t);
fillchar(a,sizeof(a),);cnt:=;
for i:= to m do
begin
readln(x,y,c,w);
add(x,y,c,w);e[cnt].rev:=cnt+;
add(y,x,,-w);e[cnt].rev:=cnt-;
end;
max:=;ans:=;
while true do
begin
spfa;
if dis[t]=inf then break;
j:=t;f:=inf;
while j<>s do begin f:=min(f,e[fre[j]].c);j:=frv[j]; end;
max:=max+f;
j:=t;w:=;
while j<>s do begin w:=w+e[fre[j]].w;dec(e[fre[j]].c,f);inc(e[e[fre[j]].rev].c,f);j:=frv[j]; end;
ans:=ans+w*f;
end;
write(max,' ',ans);
close(input);close(output);
end.
最小费用流spfa算法模板(pascal)的更多相关文章
- (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍
这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...
- UESTC - 1987 童心未泯的帆宝和乐爷 (第k短路 A*算法+SPFA算法 模板)
传送门: http://www.qscoj.cn/#/problem/show/1987 童心未泯的帆宝和乐爷 Edit Time Limit: 10000 MS Memory Limit: ...
- 851. spfa求最短路(spfa算法模板)
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...
- Spfa算法模板
输入点数n,边数m,起点终点边权 输出1号节点到所有点的最短路径长度 #include<iostream> #include<queue> #include<cstrin ...
- Bellman-Ford算法与SPFA算法详解
PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它 ...
- 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板
一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...
- Bellman-ford算法、SPFA算法求解最短路模板
Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...
- UVA 10000 Longest Paths (SPFA算法,模板题)
题意:给出源点和边,边权为1,让你求从源点出发的最长路径,求出路径长度和最后地点,若有多组,输出具有最小编号的最后地点. #include <iostream> #include < ...
- [知识点]SPFA算法
// 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vx93.html 1.前言 ...
随机推荐
- Merge语句中NULL的陷阱
NULL表示unknown,不确定值,所以任何值(包括null值)和NULL值比较都是不可知的,在on子句,where子句,Merge或case的when子句中,任何值和null比较的结果都是fals ...
- Spring学习(十六)----- Spring AOP实例(Pointcut(切点),Advisor)
在上一个Spring AOP通知的例子,一个类的整个方法被自动拦截.但在大多数情况下,可能只需要一种方式来拦截一个或两个方法,这就是为什么引入'切入点'的原因.它允许你通过它的方法名来拦截方法.另外, ...
- APP性能测试--功耗测试
一.功耗测试基础 移动设备的电池电量是非常有限的,保持持久的续航能力尤为重要.另外,android的很多特性都比较耗电(如屏幕,GPS,sensor传感器,唤醒机制,CPU,连网等的使用),我们必须要 ...
- 通过XML文件实现人物之间的对话
一.建立一个XML文档,放在项目中Assert/Resources/XML文件下 XML的内容如下: <?xml version="1.0" encoding="u ...
- Netty源码分析第3章(客户端接入流程)---->第1节: 初始化NioSockectChannelConfig
Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带 ...
- lambda----jdk8重头戏
简介(译者注:虽然看着很先进,其实Lambda表达式的本质只是一个"语法糖",由编译器推断并帮你转换包装为常规的代码,因此你可以使用更少的代码来实现同样的功能.本人建议不要乱用,因 ...
- python之爬虫_并发(串行、多线程、多进程、异步IO)
并发 在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢 import requests def fetch_async(url): res ...
- Grunt 5分钟上手:合并+压缩前端代码
Grunt 的各种优点这里就不扯了,对于 新手来说 合并(concat) + 压缩(uglify) 前端代码的需求量应该是最大的,这里以这俩种功能为主做一个5分钟的入门吧! 工作环境 $ node - ...
- 硬件设计原理图Checklist 参考案例二 【转载】
类别 描述 检视规则 原理图需要进行检视,提交集体检视是需要完成自检,确保没有低级问题. 检视规则 原理图要和公司团队和可以邀请的专家一起进行检视. 检视规则 第一次原理图发出进行集体检视后所有的修改 ...
- 06慕课网《进击Node.js基础(一)》作用域和上下文
作用域 function(){}大括号中的内容是一个作用域; function 和 var 的声明会被提到作用域的最上面 function f(){ a = 2; var b = g(); //此处可 ...