P2151 [SDOI2009]HH去散步
题目描述
HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。
现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径
输入输出格式
输入格式:
第一行:五个整数N,M,t,A,B。其中N表示学校里的路口的个数,M表示学校里的 路的条数,t表示HH想要散步的距离,A表示散步的出发点,而B则表示散步的终点。
接下来M行,每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。数据保证Ai != Bi,但
不保证任意两个路口之间至多只有一条路相连接。 路口编号从0到N − 1。 同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。
答案模45989。
输出格式:
一行,表示答案。
输入输出样例
4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
4
说明
对于30%的数据,N ≤ 4,M ≤ 10,t ≤ 10。
对于100%的数据,N ≤ 50,M ≤ 60,t ≤ 2^30,0 ≤ A,B
Solution:
本题矩阵加速dp。
一眼想到dp,因为刚走过的边不能立即返回,若按点去定义状态就会不好判断重边和刚走过的边的情况,解决办法是按边去定义状态,先把无向边拆成有向边,设$f[i][j]$表示到了第$i$条边走了$j$距离的方案数,于是$f[i][j]=\sum f[k][j-1]$(其中第$k$条边能到第$i$条边,且$i,k$不是同属一条无向边)。
于是就能矩阵优化dp了,初始矩阵就是个$1*2m$的矩阵,其中是$A$的出边都标记为1,然后转移矩阵是$2m*2m$的矩阵,由入边$i$向出边$j$转移,所以使得$matrix[i][j]++$即可。
最后答案就统计到达$B$的入边的方案数之和就好了。
代码:
/*Code by 520 -- 9.11*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
#define Clr(p) memset(&p,0,sizeof(p))
using namespace std;
const int mod=;
int n,m,t,A,B,to[],net[],h[],cnt=;
struct matrix{int a[][],r,c;}; il matrix Mul(matrix x,matrix y){
matrix tp; Clr(tp);
tp.r=x.r,tp.c=y.c;
For(i,,x.r) For(j,,y.c) For(k,,x.c)
tp.a[i][j]=(tp.a[i][j]+x.a[i][k]*y.a[k][j]%mod)%mod;
return tp;
} il void solve(int k){
matrix tp,ans; Clr(tp),Clr(ans);
ans.r=,ans.c=tp.r=tp.c=cnt;
for(RE int i=h[A];i;i=net[i]) ans.a[][i]=;
For(u,,n-) for(RE int i=h[u];i;i=net[i]) {
RE int v=to[i];
for(RE int j=h[v];j;j=net[j])
if((j^)!=i) tp.a[i][j]++;
}
while(k){
if(k&) ans=Mul(ans,tp);
k>>=;
tp=Mul(tp,tp);
}
int tot=;
for(RE int i=h[B];i;i=net[i]) tot+=ans.a[][(i^)];
cout<<tot%mod;
} il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} int main(){
ios::sync_with_stdio();
cin>>n>>m>>t>>A>>B;
int u,v;
For(i,,m) cin>>u>>v,add(u,v),add(v,u);
solve(t-);
return ;
}
P2151 [SDOI2009]HH去散步的更多相关文章
- 「 洛谷 」P2151 [SDOI2009]HH去散步
小兔的话 欢迎大家在评论区留言哦~ HH去散步 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入 标准输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 ...
- 洛谷P2151 [SDOI2009] HH去散步 [矩阵加速]
题目传送门 HH去散步 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走 ...
- [bzoj1875] [洛谷P2151] [SDOI2009] HH去散步
Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...
- 洛谷 P2151 [SDOI2009]HH去散步
题目链接 思路 如果没有不能走上一条边的限制,很显然就是dp. 设f[i][j]表示到达i点走了j步的方案数,移到k点可以表示为f[k][j+1]+=f[i][j]. 如果有限制的话,可以考虑用边表示 ...
- Luogu P2151 [SDOI2009]HH去散步 矩乘加速DP
思路:矩乘优化DP 提交:3次(用了一个奇怪的东西导致常数过大) 题解: 如果可以走完正向边后又走反向边那就显然了,但是不能走,所以我们要将正反向边分别编号,区分正反向边. 所以这道题的矩阵是以边的编 ...
- AC日记——[SDOI2009]HH去散步 洛谷 P2151
[SDOI2009]HH去散步 思路: 矩阵快速幂递推(类似弗洛伊德): 给大佬跪烂-- 代码: #include <bits/stdc++.h> using namespace std; ...
- bzoj1875: [SDOI2009]HH去散步
终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...
- BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )
把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
随机推荐
- 安装vs2017后,RDLC 报表定义具有无法升级的无效目标命名空间
原先的RDLC报表定义用的命名空间是2008,用vs2017报表设计器重新保存后,会自动升级成2016,导致无法使用. 不想升级控件,太麻烦,所以就手动修改RDLC文件吧. 1.修改http://sc ...
- vue.js和vue-router和vuex快速上手知识
vue.js和vue-router和vuex快速上手知识 一直以来,认为vue相比react而言,学习成本会更低,会更简单,但最近真正接触后,发现vue的各方面都有做一些客户化的优化,有一些亮点,但也 ...
- 解决ScrollViewer嵌套的DataGrid、ListBox等控件的鼠标滚动事件无效
C# 中,两个ScrollViewer嵌套在一起或者ScrollViewer里面嵌套一个DataGrid.ListBox.Listview(控件本身有scrollviewer)的时候,我们本想要的效果 ...
- java事务 深入Java事务的原理与应用
一.什么是JAVA事务 通常的观念认为,事务仅与数据库相关. 事务必须服从ISO/IEC所制定的ACID原则.ACID是原子性(atomicity).一致性(consistency).隔离性 (iso ...
- Java字符串分割
java中字符串的分割函数,split("你想要分割的字符", 你想要最多分割为多少段,正整数) 注意事项: 1.分割特殊字符考虑转义字符的使用.如: . \ | 2.第二个参数: ...
- Vuejs 使用 lib 库模式打包 umd 解决 NPM 包发布的问题
由于升级了 v0.2 版 GearCase 使用打包工具从 parcel 更换成 vue-cli 3.x.因此打包后发布 NPM 包的方式与之前有很大的差异,这也导致了在发布完 GearCase v0 ...
- Linear Regression and Maximum Likelihood Estimation
Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...
- Go单元测试注意事项及测试单个方法和整个文件的命令
Go程序开发过程中免不了要对所写的单个业务方法进行单元测试,Go提供了 "testing" 包可以实现单元测试用例的编写,不过想要正确编写单元测试需要注意以下三点: Go文件名必须 ...
- AS的使用技巧
title: AS的使用技巧 date: 2016-04-01 23:34:11 tags: [AndroidStudio] categories: [Tool,IDE] --- 概述 本文记录如何使 ...
- react-native ListView 性能问题
常见性能问题已经有很多答案,这里要说的是使用ListView时注意的地方, ListView的容器需要设定一个固定高度, 不然ListView中的item过多,会把整体页面撑开,设置的 remo ...