Closest Common Ancestors
Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 13370   Accepted: 4338

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices 
vertex:(nr_of_successors) successor1 successor2 ... successorn 
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
nr_of_pairs 
(u v) (x y) ...

The input file contents several data sets (at least one). 
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
For example, for the following tree: 

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)

Sample Output

2:1
5:5

Hint

Huge input, scanf is recommended.

Source

模板题

 /* ***********************************************
Author :kuangbin
Created Time :2013-9-5 8:54:16
File Name :F:\2013ACM练习\专题学习\LCA\POJ1470.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
int rmq[*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[*MAXN];
int dp[*MAXN][];//最小值对应的下标
void init(int n)
{
mm[] = -;
for(int i = ;i <= n;i++)
{
mm[i] = ((i&(i-)) == )?mm[i-]+:mm[i-];
dp[i][] = i;
}
for(int j = ; j <= mm[n];j++)
for(int i = ; i + (<<j) - <= n; i++)
dp[i][j] = rmq[dp[i][j-]] < rmq[dp[i+(<<(j-))][j-]]?dp[i][j-]:dp[i+(<<(j-))][j-];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+];
return rmq[dp[a][k]] <= rmq[dp[b-(<<k)+][k]]?dp[a][k]:dp[b-(<<k)+][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*];
int tot,head[MAXN]; int F[MAXN*];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = ;
dfs(root,root,);
st.init(*node_num-);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool flag[MAXN];
int Count_num[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int u,v,k;
int Q;
while(scanf("%d",&n) == )
{
init();
memset(flag,false,sizeof(flag));
for(int i = ;i <= n;i++)
{
scanf("%d:(%d)",&u,&k);
while(k--)
{
scanf("%d",&v);
flag[v] = true;
addedge(u,v);
addedge(v,u);
}
}
int root;
for(int i = ;i <= n;i++)
if(!flag[i])
{
root = i;
break;
}
LCA_init(root,n);
memset(Count_num,,sizeof(Count_num));
scanf("%d",&Q);
while(Q--)
{
char ch;
cin>>ch;
scanf("%d %d)",&u,&v);
Count_num[query_lca(u,v)]++;
}
for(int i = ;i <= n;i++)
if(Count_num[i] > )
printf("%d:%d\n",i,Count_num[i]);
}
return ;
}

POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

  2. POJ 1330 Nearest Common Ancestors (dfs+ST在线算法)

    详细讲解见:https://blog.csdn.net/liangzhaoyang1/article/details/52549822 zz:https://www.cnblogs.com/kuang ...

  3. poj 1470 Closest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...

  4. POJ 1470 Closest Common Ancestors(LCA&RMQ)

    题意比较费劲:输入看起来很麻烦.处理括号冒号的时候是用%1s就可以.还有就是注意它有根节点...Q次查询 在线st算法 /*************************************** ...

  5. POJ 1470 Closest Common Ancestors(LCA 最近公共祖先)

    其实这是一个裸求LCA的题目,我使用的是离线的Tarjan算法,但是这个题的AC对于我来说却很坎坷……首先是RE,我立马想到数组开小了,然后扩大了数组,MLE了……接着把数组调整适当大小,又交了一发, ...

  6. POJ 1470 Closest Common Ancestors LCA题解

    本题也是找LCA的题目,只是要求多次查询.一般的暴力查询就必定超时了,故此必须使用更高级的方法,这里使用Tarjan算法. 本题处理Tarjan算法,似乎输入处理也挺麻烦的. 注意: 由于查询的数据会 ...

  7. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  8. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  9. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

随机推荐

  1. 数据库-mysql储存过程

    存储过程是一个SQL语句集合,当主动去调用存储过程时,其中内部的SQL语句会按照逻辑执行. 一:创建存储过程 MariaDB [test2]> delimiter // MariaDB [tes ...

  2. java 证书体系及应用,自已做https证书

    原文: https://blog.csdn.net/wjq008/article/details/49071857 接下来我们将域名www.zlex.org定位到本机上.打开C:\Windows\Sy ...

  3. HTML网页自动跳转

    <meta http-equiv="refresh" content="3;URL=res.html">

  4. ThinkPHP文件目录说明

    1.ThinkPHP文件包下目录结构说明 2.ThinkPHP文件目录下文件说明 3.Conf目录下 4.Library目录

  5. java IO流知识点总结

    I/O类库中使用“流”这个抽象概念.Java对设备中数据的操作是通过流的方式.表示任何有能力产出数据的数据源对象,或者是有能力接受数据的接收端对象.“流”屏蔽了实际的I/O设备中处理数据的细节.IO流 ...

  6. Qt通过ODBC来操作Excel

    示例代码: #include<QtCore/QCoreApplication> #include<QtSql> #include<QObject> #include ...

  7. (三)Jsoup 使用选择器语法查找 DOM 元素

    第一节: Jsoup 使用选择器语法查找 DOM 元素 Jsoup使用选择器语法查找DOM元素 我们前面通过标签名,Id,Class样式等来搜索DOM,这些是不能满足实际开发需求的, 很多时候我们需要 ...

  8. Python模块Pygame安装

    一.使用pip安装Python包 大多数较新的Python版本都自带pip,因此首先可检查系统是否已经安装了pip.在Python3中,pip有时被称为pip3. 1.在Linux和OS X系统中检查 ...

  9. 常用sql 全记录(添加中)

    -- 数据库SQL总结中........... --SQL分类: (CREATE,ALTER,DROP,DECLARE) ---DDL—数据定义语言(SELECT,DELETE,UPDATE,INSE ...

  10. 2016-2017-2 20155309南皓芯《java程序设计》第十周学习总结

    教材内容总结 网络编程 定义:网络编程就是在两个或两个以上的设备之间传输数据. 计算机网络概述: 网络编程的实质就是两个(或多个)设备(例如计算机)之间的数据传输. 网络中的每个设备都会有一个唯一的数 ...