Prelude

ODT这个东西真是太好用了,以后写暴力骗分可以用,写在这里mark一下。

题目链接:ヽ(✿゚▽゚)ノ


Solution

先把原题解贴在这里:(ノ*・ω・)ノ

简单地说,因为数据是全部随机的,所以一定会有特别多的区间set,就会有很多数字相同,那么我们暴力把相同的数字合并成一个点,合并完之后数组就变得很短,然后对于询问暴力做就可以了。

具体复杂度是什么我也不会证明qwq,所以就把由乃的题解贴上来了qwq,感觉很靠谱的样子。

题解中给的是用STL的set维护缩点后的数组,我感觉不是很好写,就直接用数组维护了。

ddd还写过链表维护的,不过感觉都差不多,反正复杂度都是对的,肯定能过qwq。


Code

#include <bits/stdc++.h>
#define dprint printf using namespace std;
typedef long long ll;
typedef pair<ll,int> pli;
const int MAXN = 100010;
int _w; void noprint(...) {} int fpow( int a, int b, int mod ) {
int c = 1;
while(b) {
if( b & 1 ) c = int(1LL * c * a % mod);
a = int(1LL * a * a % mod);
b >>= 1;
}
return c;
} int inter( int l1, int r1, int l2, int r2 ) {
int l = max(l1, l2);
int r = min(r1, r2);
return max(r-l+1, 0);
} int n, m, seed, vmax;
ll a[MAXN]; int rnd() {
const int MOD = 1e9+7; int ret = seed;
seed = int((1LL * seed * 7 + 13) % MOD);
return ret;
} pli b[MAXN];
int sz;
void prelude() {
sz = 1;
b[sz-1].first = a[1], b[sz-1].second = 0;
for( int i = 1; i <= n; ++i ) {
if( b[sz-1].first == a[i] ) {
++b[sz-1].second;
} else {
b[sz].first = a[i], b[sz].second = 1, ++sz;
}
}
} pli c[MAXN];
int csz; void append( ll x, int cnt ) {
if( csz && c[csz-1].first == x )
c[csz-1].second += cnt;
else
c[csz].first = x, c[csz].second = cnt, ++csz;
} void solve1( int l, int r, int x ) {
int L = 0, R = 0;
csz = 0;
for( int i = 0; i < sz; ++i ) {
L = R+1;
R = L + b[i].second - 1;
ll num = b[i].first;
int cntl = inter(L, l-1, L, R);
int cnt = inter(L, R, l, r);
int cntr = inter(r+1, R, L, R);
if( cntl ) append(num, cntl);
if( cnt ) append(num+x, cnt);
if( cntr ) append(num, cntr);
}
sz = csz;
for( int i = 0; i < sz; ++i )
b[i] = c[i];
} void solve2( int l, int r, int x ) {
int L = 0, R = 0;
csz = 0;
for( int i = 0; i < sz; ++i ) {
L = R+1;
R = L + b[i].second - 1;
ll num = b[i].first;
int cntl = inter(L, l-1, L, R);
int cnt = inter(L, R, l, r);
int cntr = inter(r+1, R, L, R);
if( cntl ) append(num, cntl);
if( cnt ) append(x, cnt);
if( cntr ) append(num, cntr);
}
sz = csz;
for( int i = 0; i < sz; ++i )
b[i] = c[i];
} void solve3( int l, int r, int x ) {
int L = 0, R = 0;
csz = 0;
for( int i = 0; i < sz; ++i ) {
L = R+1;
R = L + b[i].second - 1;
int cnt = inter(L, R, l, r);
if( cnt ) c[csz++] = pli( b[i].first, cnt );
}
sort(c, c+csz);
L = R = 0;
for( int i = 0; i < csz; ++i ) {
L = R+1;
R = L + c[i].second - 1;
if( x >= L && x <= R )
return (void)printf( "%lld\n", c[i].first );
}
return assert(0);
} void solve4( int l, int r, int x, int y ) {
int L = 0, R = 0, ans = 0;
for( int i = 0; i < sz; ++i ) {
L = R+1;
R = L + b[i].second - 1;
int cnt = inter(L, R, l, r);
if( cnt ) ans = int((ans + 1LL * cnt * fpow( int(b[i].first % y), x, y )) % y);
}
printf( "%d\n", ans );
} void output_array() {
for( int i = 0; i < sz; ++i ) {
int t = b[i].second;
while( t-- )
dprint( "%lld ", b[i].first );
}
dprint("\n");
} int main() {
_w = scanf( "%d%d%d%d", &n, &m, &seed, &vmax );
// dprint("Init:\n");
for( int i = 1; i <= n; ++i ) {
a[i] = rnd() % vmax + 1;
// dprint("%lld ", a[i]);
}
// dprint("\n");
prelude();
for( int i = 1; i <= m; ++i ) {
int op, l, r, x, y;
op = rnd() % 4 + 1;
l = rnd() % n + 1;
r = rnd() % n + 1;
if( l > r ) swap(l, r);
if( op == 3 )
x = rnd() % (r-l+1) + 1;
else
x = rnd() % vmax + 1;
if( op == 4 )
y = rnd() % vmax + 1;
if( op == 1 ) solve1(l, r, x);
else if( op == 2 ) solve2(l, r, x);
else if( op == 3 ) solve3(l, r, x);
else if( op == 4 ) solve4(l, r, x, y);
// dprint("op = %d, l = %d, r = %d, x = %d, y = %d\n", op, l, r, x, y);
// output_array();
}
return 0;
}

【题解】Willem, Chtholly and Seniorious Codeforces 896C ODT的更多相关文章

  1. CF&&CC百套计划1 Codeforces Round #449 C. Willem, Chtholly and Seniorious (Old Driver Tree)

    http://codeforces.com/problemset/problem/896/C 题意: 对于一个随机序列,执行以下操作: 区间赋值 区间加 区间求第k小 区间求k次幂的和 对于随机序列, ...

  2. Willem, Chtholly and Seniorious

    Willem, Chtholly and Seniorious https://codeforces.com/contest/897/problem/E time limit per test 2 s ...

  3. 【模板】珂朵莉树(ODT)(Codeforces 896C Willem, Chtholly and Seniorious)

    题意简述 维护一个数列,支持区间加,区间赋值,区间求第k小,区间求幂和 数据随机 题解思路 ODT是一种基于std::set的暴力数据结构. 每个节点对应一段区间,该区间内的数都相等. 核心操作spl ...

  4. Codeforces Round #449 (Div. 1) Willem, Chtholly and Seniorious (ODT维护)

    题意 给你一个长为 \(n\) 的序列 \(a_i\) 需要支持四个操作. \(1~l~r~x:\) 把 \(i \in [l, r]\) 的 \(a_i\) 加 \(x\) . \(2~l~r~x: ...

  5. 【ODT】cf896C - Willem, Chtholly and Seniorious

    仿佛没用过std::set Seniorious has n pieces of talisman. Willem puts them in a line, the i-th of which is ...

  6. cf896C. Willem, Chtholly and Seniorious(ODT)

    题意 题目链接 Sol ODT板子题.就是用set维护连续段的大暴力.. 然鹅我抄的板子本题RE提交AC??.. 具体来说,用50 50 658073485 946088556这个数据测试下面的代码, ...

  7. Codeforces Round #449 (Div. 1)C - Willem, Chtholly and Seniorious

    ODT(主要特征就是推平一段区间) 其实就是用set来维护三元组,因为数据随机所以可以证明复杂度不超过O(NlogN),其他的都是暴力维护 主要操作是split,把区间分成两个,用lowerbound ...

  8. 2019.01.19 codeforces896C.Willem, Chtholly and Seniorious(ODT)

    传送门 ODTODTODT出处(万恶之源) 题目简述: 区间赋值 区间加 区间所有数k次方和 区间第k小 思路:直接上ODTODTODT. 不会的点这里 代码: #include<bits/st ...

  9. 题解 CF896C 【Willem, Chtholly and Seniorious】

    貌似珂朵莉树是目前为止(我学过的)唯一一个可以维护区间x次方和查询的高效数据结构. 但是这玩意有个很大的毛病,就是它的高效建立在数据随机的前提下. 在数据随机的时候assign操作比较多,所以它的复杂 ...

随机推荐

  1. WinForm中从SQLite数据库获取数据显示到DataGridView

    1.关于Sqlite Sqlite是一款开源的.适合在客户端和嵌入式设备中使用的轻量级数据库,支持标准的SQL. 不像SqlServer或Oracle的引擎是一个独立的进程.通过TCP或命名管道等与程 ...

  2. 安装hive的web界面

    参考: http://blog.csdn.net/xinghalo/article/details/52433914 报错参考; http://blog.163.com/artsn@126/blog/ ...

  3. sprint2(第九天)

    今天是sprint2的最后一天,已经完成功能有可以实现点餐功能.菜品的添加和删减.菜品数量的增减.添加备注.查看订单详情.订单状态.提交订单.后厨可以查看订单信息,对菜品的状态进行操作,是否完成烹饪, ...

  4. 团队项目-北航MOOC系统Android客户端 NABC

    北航MOOC系统Android客户端 NABC (N) Need 需求 MOOC的全名是Massive Open Online Course,被称作大型开放式网络课程.2012年,美国的顶尖大学陆续设 ...

  5. 团队编程--MP3播放器

    设计思路: 这次的作业是一个MP3播放器,它是一个团队项目.由于我们都没接触过这类的编程.刚开始的时候我们是不知道从什么地方着手的.经过我们的商量我们决定从现在市场主流的音乐播放器上找到几个主要的功能 ...

  6. 封装react组件——三级联动

    思路: 数据设计:省份为一维数组,一级市为二维数组,二级市/区/县为三维数组.这样设计的好处在于根据数组索引实现数据的关联. UI组件: MUI的DropDownMenu组件或Select Field ...

  7. 第一个spring冲刺心得及感想

    在这次spring中,学到了不少东西: 1.团队协作精神 2.任务细节化,任务燃尽图 3.身为sm的责任 但是在过程中也认识到了一些不足 1.对于团队协作完成一个大的项目还是不熟悉 2.个人能力的不足 ...

  8. 简单说明webbench的安装和使用

    简介 运行在linux上的一个性能测试工具 官网地址:http://home.tiscali.cz/~cz210552/webbench.html 如果不能打开的话,也可以直接到网盘下载:http:/ ...

  9. oracle 简单的sysTimeStamp类型转date 类型

    oracle  简单的SYSTIMESTAMP 类型转date 类型 SELECT SYSTIMESTAMP , SYSTIMESTAMP+0 FROM dual; SAMPLE_TIME ----- ...

  10. 关于2013年1月21日的DNS故障分析文章

    首页 资讯 小组 资源 注册 登录       首页 最新文章 业界 开发 IT技术 设计 创业 IT职场 访谈 在国外 经典回顾 更多 > - 导航条 - 首页 最新文章 业界 - Googl ...