B. Urbanization
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Local authorities have heard a lot about combinatorial abilities of Ostap Bender so they decided to ask his help in the question of urbanization. There are n people
who plan to move to the cities. The wealth of the i of them is equal to ai.
Authorities plan to build two cities, first for n1 people
and second for n2 people.
Of course, each of n candidates can settle in only one of the cities. Thus, first some subset of candidates of size n1 settle
in the first city and then some subset of size n2 is
chosen among the remaining candidates and the move to the second city. All other candidates receive an official refuse and go back home.

To make the statistic of local region look better in the eyes of their bosses, local authorities decided to pick subsets of candidates in such a way that the sum of arithmetic mean of wealth of
people in each of the cities is as large as possible. Arithmetic mean of wealth in one city is the sum of wealth ai among
all its residents divided by the number of them (n1 or n2 depending
on the city). The division should be done in real numbers without any rounding.

Please, help authorities find the optimal way to pick residents for two cities.

Input

The first line of the input contains three integers nn1 and n2 (1 ≤ n, n1, n2 ≤ 100 000, n1 + n2 ≤ n) —
the number of candidates who want to move to the cities, the planned number of residents of the first city and the planned number of residents of the second city.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000),
the i-th of them is equal to the wealth of the i-th
candidate.

Output

Print one real value — the maximum possible sum of arithmetic means of wealth of cities' residents. You answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b.
The checker program will consider your answer correct, if .

Examples
input
2 1 1
1 5
output
6.00000000
input
4 2 1
1 4 2 3
output
6.50000000
Note

In the first sample, one of the optimal solutions is to move candidate 1 to the first city and candidate 2 to
the second.

In the second sample, the optimal solution is to pick candidates 3 and 4 for
the first city, and candidate 2 for the second one. Thus we obtain (a3 + a4) / 2 + a2 = (3 + 2) / 2 + 4 = 6.5

——————————————————————————————————————————

题目的意思是在n个数里,取出n1和数和n2个数,不能重读,使得n1个数的算术平均数andn2个数的算术平均数和最大

我们用的的是贪心的思想,先把每个数从大到小排个序,然后取前n个数,这里贪心的把最大的几个数分到n1和n2种较

小的中,才能保证结果最大。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; bool cmp(long long a,long long b)
{
return a>b;
} int main()
{
int n,a,b;
double s[100005];
while(~scanf("%d%d%d",&n,&a,&b))
{
for(int i=0;i<n;i++)
scanf("%lf",&s[i]);
sort(s,s+n,cmp);
double sum1=0;
for(int i=0;i<min(a,b);i++)
{
sum1+=s[i];
}
double ave1=sum1/(min(a,b)); double sum2=0;
for(int i=min(a,b);i<a+b;i++)
{
sum2+=s[i];
}
double ave2=sum2/(max(a,b)); printf("%.8f\n",ave1+ave2);
}
return 0;
}

Codeforces735B Urbanization 2016-12-13 11:58 114人阅读 评论(0) 收藏的更多相关文章

  1. hdu 1057 (simulation, use sentinel to avoid boudary testing, use swap trick to avoid extra copy.) 分类: hdoj 2015-06-19 11:58 25人阅读 评论(0) 收藏

    use sentinel to avoid boudary testing, use swap trick to avoid extra copy. original version #include ...

  2. Design T-Shirt 分类: HDU 2015-06-26 11:58 7人阅读 评论(0) 收藏

    Design T-Shirt Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  3. UIAlertController高级之嵌入其他控件 分类: ios技术 2015-02-02 11:58 96人阅读 评论(0) 收藏

    在编码过程中,我们经常遇到需要这样一个效果,就是弹出框的嵌套; 举个最简单的例子,比如你要选择时间,必然需要一个时间选择器DatePicker.但是这个选择器又是在你点击某按钮时弹出,弹出方式最常见的 ...

  4. StatusStrip 分类: C# 2015-07-23 11:58 2人阅读 评论(0) 收藏

    通过StatusStrip显示窗体状态栏 同时将状态栏分成三部分 居左边显示相关文字信息 中间空白显示 居右边显示时间信息 1.创建窗体及添加StatusStrip   默认StatusStrip名称 ...

  5. 团体程序设计天梯赛L2-021 点赞狂魔 2017-04-18 11:39 154人阅读 评论(0) 收藏

    L2-021. 点赞狂魔 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 微博上有个"点赞"功能,你可以为你 ...

  6. [软考]之软件过程模型I 标签: 总结软考 2015-10-24 11:58 863人阅读 评论(35) 收藏

    做软考题的时候经常碰到软件工程的题,因为这些题有的很相近,容易混淆,所以在这里总结归纳一下. 软件过程模型: 瀑布模型: 瀑布模型是将软件生存周期中的各个活动规定为依线性顺序连接的若干阶段的模型,包括 ...

  7. 企业证书APP发布流程 分类: ios相关 app相关 2015-06-10 11:01 212人阅读 评论(0) 收藏

    企业发布app的 过程比app store 发布的简单多了,没那么多的要求,哈 但是整个工程的要求还是一样,比如各种像素的icon啊 命名规范啊等等. 下面是具体的流程 1.修改你的 bundle i ...

  8. 用IBM WebSphere DataStage进行数据整合: 第 1 部分 分类: H2_ORACLE 2013-08-23 11:20 688人阅读 评论(0) 收藏

    转自:http://www.ibm.com/developerworks/cn/data/library/techarticles/dm-0602zhoudp/ 引言 传统的数据整合方式需要大量的手工 ...

  9. Curling 2.0 分类: 搜索 2015-08-09 11:14 3人阅读 评论(0) 收藏

    Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14289 Accepted: 5962 Descript ...

随机推荐

  1. How to Pronounce ‘to the’ in a Sentence

    How to Pronounce ‘to the’ in a Sentence Share Tweet Share Tagged With: The Word THE, TO Reduction St ...

  2. 发布MVC项目到服务器上时候遇到的 模块 DirectoryListingModule 通知 ExecuteRequestHandler 处理程序 StaticFile 错误代码 0x00000000

    应用程序“HMW121197”中的服务器错误错误摘要HTTP 错误 403.14 - ForbiddenWeb 服务器被配置为不列出此目录的内容. 详细错误信息模块 DirectoryListingM ...

  3. StringBuild的一个小问题

    今天在项目开发的过程中写了一小段代码: sb_result.AppendFormat("{\"SmsmTaskModeName\":\"{0}\",\ ...

  4. ECMAScript6新特性之String API

    填充到指定长度,默认使用空格填充. 一 左填充 var arr = []; for(var i=0;i<20;i++){ var str = (i+'').padStart(2,'0'); ar ...

  5. 解决 listView gridView 与ScrollView嵌套时的冲突

    package com.xqx.fight; import android.app.Activity; import android.os.Bundle; import android.view.Me ...

  6. 内部存储 openFileInputStream openFileOutputStream

    package com.qianfeng.gp08_day24_internalstorage; import java.io.FileInputStream; import java.io.File ...

  7. php 输出缓冲 Output Control

    关于php的输出缓冲,首先要说明的是什么是缓冲(buffer),比如我们通过记事本在编辑文件的时候,并不是我们输入了内容,系统就会立刻向磁盘中写入数据.只有我们在保存文件后,系统才会向磁盘写入数据.而 ...

  8. linux 下 php 安装 pthreads

    1.下载pthreads的源码包 https://pecl.php.net/package/pthreads 如:pthreads-3.1.6.tgz 2.解压 > tar zxvf pthre ...

  9. Spring框架的事务管理之基于AspectJ的XML方式(重点掌握)

    1. 步骤一:恢复转账开发环境(转账开发环境见“https://www.cnblogs.com/wyhluckdog/p/10137283.html”) 2.步骤二:引入AOP的开发包3.步骤三:引入 ...

  10. 3D文件压缩库——Draco简析

    3D文件压缩库——Draco简析 今年1月份时,google发布了名为“Draco”的3D图形开源压缩库,下载了其代码来看了下,感觉虽然暂时用不到,但还是有前途的,故简单做下分析. 注:Draco 代 ...