题目描述

监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。

输入

输入两个整数M,N。1<=M<=10^8,1<=N<=10^12。

输出

可能越狱的状态数,模100003取余

样例输入

2 3

样例输出

6

题解

越狱状态数=总状态数-不越狱状态数=\(m^{n}-m\cdot\left(m-1\right)^{n-1}\)

快速幂+取模

 #include<cstdio>
const int Mod=;
int m;long long n;
int pow(int base,long long exp){
int ans=;
while(exp){
if(exp&) ans=1ll*ans*base%Mod;
base=1ll*base*base%Mod;
exp>>=;
}
return ans;
}
int main(){
scanf("%d%lld",&m,&n);
printf("%d",((pow(m,n)-1ll*m*pow(m-,n-))%Mod+Mod)%Mod);
return ;
}

【bzoj题解】1008 越狱的更多相关文章

  1. BZOJ 1008 越狱题解

    其实这题很水,显然n个房间有m种宗教,总共有n^m种情况, 我们再考虑不合法的情况,显然第一个房间有m种情况,而后一种只有m-1种情况(因为不能相同) 所以不合法的情况有(m-1)^(n-1)*m种情 ...

  2. 【BZOJ】1008: [HNOI2008]越狱(快速幂)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...

  3. BZOJ 1008 越狱

    Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 In ...

  4. BZOJ 1008 越狱 组合数学

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1008 题目大意: 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗 ...

  5. BZOJ 1008 越狱 (组合数学)

    题解:正难则反,从总数中减去全部相邻不相同的数目就是答案,n*(n-1)^(m-1):第一个房间有n中染色方案,剩下m-1个房间均只有n-1种染色方案,用总数减就是答案. #include <c ...

  6. 【BZOJ】1008: [HNOI2008]越狱(组合数学)

    题目 题目描述 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 输入输出格式 ...

  7. 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计

    @ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...

  8. 【bzoj题解】题解传送门

    如题,题解传送门: 1001 1008 1012

  9. BZOJ 题解continue

    1041 圆上的整点 暴力枚举 会超时 这道题很像之前一次noip模拟题(当时的我还太水了(虽然现在也很水)) x2+y2=R2 考虑变型 x2=(R+y)(R-y) int d=gcd(R,y) i ...

随机推荐

  1. P2303 [SDOi2012]Longge的问题

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入输出格式 输入格式: 一 ...

  2. MT【127】点对个数两题之一【图论】

    在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 其中任意两个点之间的距离至少为 \(1\), 证明在这 \(n\) 个点中距离为 \(1\)的点对数不超过 \(3n\). ...

  3. 【刷题】洛谷 P3455 [POI2007]ZAP-Queries

    题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...

  4. huhamhire-hosts — Hosts文件自动配置工具

    https://www.anotherhome.net/1376 推荐配合EasyGoAgent使用: EasyGoAgent — 开箱即用的GoAgent Update 2015.5.15 数据文件 ...

  5. 【BZOJ3294】放棋子(动态规划,容斥,组合数学)

    [BZOJ3294]放棋子(动态规划,容斥,组合数学) 题面 BZOJ 洛谷 题解 如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉. 那么我们就可以写出一个\ ...

  6. 【转载】dfs序七个经典问题

    作者:weeping 出处:www.cnblogs.com/weeping/ 原文链接 https://www.cnblogs.com/weeping/p/6847112.html 参考自:<数 ...

  7. 控制对象的创建方式(禁止创建栈对象or堆对象)和创建的数量

    我们知道,C++将内存划分为三个逻辑区域:堆.栈和静态存储区.既然如此,我称位于它们之中的对象分别为堆对象,栈对象以及静态对象.通常情况下,对象创建在堆上还是在栈上,创建多少个,这都是没有限制的.但是 ...

  8. CMake 案例

    单个源文件 # CMake 最低版本号要求 cmake_minimum_required (VERSION 3.11) # 项目信息 project (Demo) # 指定生成目标 add_execu ...

  9. Could not update Activiti database schema: unknown version from database: '5.20.0.1'

    转: Could not update Activiti database schema: unknown version from database: '5.20.0.1' 2017年11月22日 ...

  10. codeforces.com/contest/251/problem/C

    C. Number Transformation time limit per test 2 seconds memory limit per test 256 megabytes input sta ...