------------------------------------------
本文系本站原创,欢迎转载!
转载请注明出处:http://ericxiao.cublog.cn/
------------------------------------------
一: 前言
Ring buffer是整个trace系统使用缓存管理的一种方式, 由于trace可能在内核运行的任何时候发生, 这种kernel的不确定状态决定了ring buffer的写操作中不能有任何引起睡眠的操作, 而且ring buffer的操作频率极高,所以在ring buffer实现里有很多高效的方式来处理多处理器, 读写同步的机制. 理解ring buffer是我们理解整个kernel trace的基础. 本文分析的源代码版本为linux kernel 2.6.30, 分析的代码基本位于kernel/trace/ring_buffer.c中.另外,为了描述的方便,下文ring buffer用RB来代替.
 
二: ring buffer的基本数据结构
在深入到代码之前,我们先来看一下RB所用到的几个基本的数据结构,这样我们对RB就会有一个全局性的了解.整个RB的数据结构框架如下所示:
ring buffer用struct ring_buffer来表示,数据结构定义如下:
struct ring_buffer {
   /*RB中的页面数*/
    unsigned            pages;
    /*RB的标志,目前只有RB_FL_OVERWRITE可用*/
    unsigned            flags;
    /*ring buffer中包含的cpu个数*/
    int             cpus;
    /*整个ring buffer的禁用标志,用原子操作了防止竞争*/
    atomic_t            record_disabled;
    /* cpu位图*/
    cpumask_var_t           cpumask;
    /*RB访问锁*/
    struct mutex            mutex;
    /*CPU的缓存区页面,每个CPU对应一项*/
    struct ring_buffer_per_cpu  **buffers;
 
#ifdef CONFIG_HOTPLUG_CPU
    /*多CPU情况下的cpu hotplug 通知链表*/
    struct notifier_block       cpu_notify;
#endif
    /*RB所用的时间,用来计数时间戳*/
    u64             (*clock)(void);
}
在RB的操作中,我们可以禁止全局的RB操作,例如,完全禁用掉Trace功能后,整个RB都是不允许再操做的,这时,就可以将原子变量record_disabled 加1.相反的,如果启用的话,将其减1即可.只有当record_disabled的值等于0时,才允许操作RB.
同时,有些时候,要对RB的一些数据进行更新,比如,我要重新设置一下RB的缓存区大小,这都需要串行操作,因此,在ring_buffer结构中有mutex成员,用来避免这些更改RB的操作的竞争.
 
每个cpu的缓存区结构为:
struct ring_buffer_per_cpu {
    /*该cpu buffer所在的CPU*/
    int             cpu;
    /*cpu buffer所属的RB*/
    struct ring_buffer      *buffer;
    /*读锁,用了避免读者的操行操作,有时在
     *写者切换页面的时候,也需要持有此锁
     */
    spinlock_t          reader_lock; /* serialize readers */
    raw_spinlock_t          lock;
    struct lock_class_key       lock_key;
    /*cpu buffer的页面链表*/
    struct list_head        pages;
    /*起始读位置*/
    struct buffer_page      *head_page; /* read from head */
    /*写位置*/
    struct buffer_page      *tail_page; /* write to tail */
    /*提交位置,只有当被写的页面提交过后
     *才允许被读
     */
    struct buffer_page      *commit_page;   /* committed pages */
    /*reader页面, 用来交换读页面*/
    struct buffer_page      *reader_page;
    unsigned long           nmi_dropped;
    unsigned long           commit_overrun;
    unsigned long           overrun;
    unsigned long           read;
    local_t             entries;
    /*最新的页面commit时间*/
    u64             write_stamp;
    /*最新的页面read时间*/
    u64             read_stamp;
    /*cpu buffer的禁用启用标志*/
    atomic_t            record_disabled;
}
首先,对每一个cpu的操作限制是由ring_buffer_per_cpu->record_disabled来实现的.同ring_buffer一样,禁用加1,启用减1.
从上图的全局结构关联图中,我们也可以看到,每个cpu都有一系列的页面,这样页面都链入在pages中.
该页面的结构如下:
struct buffer_page {
    /*用来形成链表*/
    struct list_head list;      /* list of buffer pages */
    /*写的位置*/
    local_t     write;     /* index for next write */
    /*读的位置*/
    unsigned    read;      /* index for next read */
    /*页面中有多少项数据*/
    local_t     entries;   /* entries on this page */
    struct buffer_data_page *page;  /* Actual data page */
};
具体的缓存区是由struct buffer_data_page指向的,实际上,它是具体页面的管理头部,结构如下:
struct buffer_data_page {
    /*页面第一次被写时的时间戳*/
    u64     time_stamp;    /* page time stamp */
    /*提交的位置*/
    local_t     commit;    /* write committed index */
    /*用来存放数据的缓存区*/
    unsigned char   data[];    /* data of buffer page */
};
这里就有一个疑问了,为什么提交页面要放到struct buffer_date_page中,而不放到struct buffer_page呢?
 
三: ring buffer的初始化
Ring buffer的初始化函数为ring_buffer_alloc(). 代码如下:
struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
{
    struct ring_buffer *buffer;
    int bsize;
    int cpu;
 
    /* Paranoid! Optimizes out when all is well */
   
    /*如果struct buffer_page的大小超过了struct page的大小,编译时会报错
     *因为ring_buffer_page_too_big()其实并不存在.
     */
    if (sizeof(struct buffer_page) > sizeof(struct page))
        ring_buffer_page_too_big();
 
 
    /* keep it in its own cache line */
 
    /*alloc and init struct ring_buffer*/
    buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
             GFP_KERNEL);
    if (!buffer)
        return NULL;
 
    /*init cpumask*/
    if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
        goto fail_free_buffer;
 
    /*BUF_PAGE_SIZE means the data size of per page,
     *size/BUF_PAGE_SIZE can calculate page number of per cpu.
     */
    buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
    buffer->flags = flags;
    /* buffer->clock is the timestap of local cpu*/
    buffer->clock = trace_clock_local;
 
    /* need at least two pages */
    if (buffer->pages == 1)
        buffer->pages++;
 
    /*
     * In case of non-hotplug cpu, if the ring-buffer is allocated
     * in early initcall, it will not be notified of secondary cpus.
     * In that off case, we need to allocate for all possible cpus.
     */
#ifdef CONFIG_HOTPLUG_CPU
    get_online_cpus();
    cpumask_copy(buffer->cpumask, cpu_online_mask);
#else
    cpumask_copy(buffer->cpumask, cpu_possible_mask);
#endif
 
    /*number of cpu*/
    buffer->cpus = nr_cpu_ids;
 
    /* alloc and init buffer for per cpu,Notice:buffer->buffers is a double pointer*/
    bsize = sizeof(void *) * nr_cpu_ids;
    buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
                  GFP_KERNEL);
    if (!buffer->buffers)
        goto fail_free_cpumask;
 
    for_each_buffer_cpu(buffer, cpu) {
        buffer->buffers[cpu] =
            rb_allocate_cpu_buffer(buffer, cpu);
        if (!buffer->buffers[cpu])
            goto fail_free_buffers;
    }
 
#ifdef CONFIG_HOTPLUG_CPU
    buffer->cpu_notify.notifier_call = rb_cpu_notify;
    buffer->cpu_notify.priority = 0;
    register_cpu_notifier(&buffer->cpu_notify);
#endif
 
    put_online_cpus();
    mutex_init(&buffer->mutex);
 
    return buffer;
 
 fail_free_buffers:
    for_each_buffer_cpu(buffer, cpu) {
        if (buffer->buffers[cpu])
            rb_free_cpu_buffer(buffer->buffers[cpu]);
    }
    kfree(buffer->buffers);
 
 fail_free_cpumask:
    free_cpumask_var(buffer->cpumask);
    put_online_cpus();
 
 fail_free_buffer:
    kfree(buffer);
    return NULL;
}
结合我们上面分析的数据结构,来看这个函数,应该很简单,首先,我们在这个函数中遇到的第一个疑问是:
为什么RB至少需要二个页面呢?
我们来假设一下只有一个页面的情况,RB开始写,因为head和tail是重合在一起的,当写完一个页面的时候,tail后移,因为只有一个页面,还是会指向这个页面,这样还是跟head重合在一起,如果带有RB_FL_OVERWRITE标志的话,head会后移试图清理这个页面,但后移之后还是指向这个页面,也就是说tail跟head还是会重合.假设此时有读操作,读完了head的数据,造成head后移,同样head和tail还是重合在一起.因此就造成了,第一次写完这个页面,就永远无法再写了,因为这时候永远都是一个满的状态.
也就是说,这里需要两个页面是为了满足缓存区是否满的判断,即tail->next == head
 
然后,我们面临的第二个问题是,RB怎么处理hotplug cpu的情况呢?
看下面的代码:
    /*number of cpu*/
    buffer->cpus = nr_cpu_ids;
 
    /* alloc and init buffer for per cpu,Notice:buffer->buffers is a double pointer*/
    bsize = sizeof(void *) * nr_cpu_ids;
    buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
                  GFP_KERNEL);
从上面的代码看到,在初始化RB的时候,它为每个可能的CPU都准备了一个 “框”,下面来看下这个 “框”的初始化:
    for_each_buffer_cpu(buffer, cpu) {
        buffer->buffers[cpu] =
            rb_allocate_cpu_buffer(buffer, cpu);
        if (!buffer->buffers[cpu])
            goto fail_free_buffers;
    }
从此可以看到,它只为当时存在的CPU分配了缓存区.
到这里,我们大概可以猜到怎么处理hotplug cpu的情况了: 在有CPU加入时,为这个CPU对应的 “框”对应分配内存,在CPU拨除或掉线的情况下,释放掉该CPU对应的内存. 到底是不是跟我们所想的一样呢? 我们继续看代码:
#ifdef CONFIG_HOTPLUG_CPU
    buffer->cpu_notify.notifier_call = rb_cpu_notify;
    buffer->cpu_notify.priority = 0;
    register_cpu_notifier(&buffer->cpu_notify);
#endif
如上代码片段,它为hotplug CPU注册了一个notifier, 它对优先级是0,对应的处理函数是rb_cpu_notify,代码如下:
static int rb_cpu_notify(struct notifier_block *self,
             unsigned long action, void *hcpu)
{
    struct ring_buffer *buffer =
        container_of(self, struct ring_buffer, cpu_notify);
    long cpu = (long)hcpu;
 
    switch (action) {
    /*CPU处理active 的notify*/ 
    case CPU_UP_PREPARE:
    case CPU_UP_PREPARE_FROZEN:
        /*如果cpu已经位于RB的cpu位图,说明已经为其准备好了
         *缓存区,直接退出
         */
        if (cpu_isset(cpu, *buffer->cpumask))
            return NOTIFY_OK;
 
        /*否则,它是一个新的CPU, 则为其分配缓存,如果
         *分配成功,则将其在cpu位图中置位*/
        buffer->buffers[cpu] =
            rb_allocate_cpu_buffer(buffer, cpu);
        if (!buffer->buffers[cpu]) {
            WARN(1, "failed to allocate ring buffer on CPU %ld\n",
                 cpu);
            return NOTIFY_OK;
        }
        smp_wmb();
        cpu_set(cpu, *buffer->cpumask);
        break;
    case CPU_DOWN_PREPARE:
    case CPU_DOWN_PREPARE_FROZEN:
        /*
         * Do nothing.
         *  If we were to free the buffer, then the user would
         *  lose any trace that was in the buffer.
         */
         /*如果是CPU处于deactive的notify,则不需要将其占的缓存
         *释放,因为一旦释放,我们将失去该cpu上的trace 信息*/
        break;
    default:
        break;
    }
    return NOTIFY_OK;
}
首先,RB的结构体中内嵌了struct notifier_block,所以,我们利用其位移差就可以取得对应的RB结构,上面的代码比较简单,不过,与我们之前的估计有点差别,即,在CPU处理deactive状态的时候,并没有将其对应的缓存释放,这是为了避免丢失该CPU上的trace信息.
 
接下来我们看一下对每个CPU对应的缓存区的初始化,它是在rb_allocate_cpu_buffer()中完成的,代码如下:
static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
{
    struct ring_buffer_per_cpu *cpu_buffer;
    struct buffer_page *bpage;
    unsigned long addr;
    int ret;
 
    /* alloc and init a struct ring_buffer_per_cpu */
    cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
                  GFP_KERNEL, cpu_to_node(cpu));
    if (!cpu_buffer)
        return NULL;
 
    cpu_buffer->cpu = cpu;
    cpu_buffer->buffer = buffer;
    spin_lock_init(&cpu_buffer->reader_lock);
    cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
    INIT_LIST_HEAD(&cpu_buffer->pages);
 
 
    /* alloc and init cpubuffer->reader_page */
    bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
                GFP_KERNEL, cpu_to_node(cpu));
    if (!bpage)
        goto fail_free_buffer;
 
    cpu_buffer->reader_page = bpage;
    addr = __get_free_page(GFP_KERNEL);
    if (!addr)
        goto fail_free_reader;
    bpage->page = (void *)addr;
    rb_init_page(bpage->page);
 
    INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
 
    /* alloc and init the page list,  head_page, tail_page and commit_page are all point to the fist page*/
    ret = rb_allocate_pages(cpu_buffer, buffer->pages);
    if (ret < 0)
        goto fail_free_reader;
 
    cpu_buffer->head_page
        = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
    cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
 
    return cpu_buffer;
 
 fail_free_reader:
    free_buffer_page(cpu_buffer->reader_page);
 
 fail_free_buffer:
    kfree(cpu_buffer);
    return NULL;
}
这段代码的逻辑比较清晰,首先,它分配并初始化了ring_buffer_per_cpu结构,然后对其缓存区进行初始化.在这里我们需要注意,reader_page单独占一个页面,并末与其它页面混在一起.初始化状态下,head_pages,commit_page,tail_page都指向同一个页面,即ring_buffer_per_cpu->pages链表中的第一个页面.
 
四:ring buffer的写操作
一般来说,trace子系统往ring buffer中写数据通常分为两步,一是从ring buffer是取出一块缓冲区,然后再将数据写入到缓存区,然后再将缓存区提交.当然ring buffer也提供了一个接口直接将数据写入ring buffer,两种方式的实现都是一样的,在这里我们分析第一种做法,后一种方式对应的接口为ring_buffer_write().可自行对照分析.
 
4.1:ring_buffer_lock_reserver()分析
ring_buffer_lock_reserve()用于从ring buffer中取出一块缓存,函数如下:
struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
{
    struct ring_buffer_per_cpu *cpu_buffer;
    struct ring_buffer_event *event;
    int cpu, resched;
 
    /* jude wheter ring buffer is off ,can use trace_on/trace_off to enable/disable it */
    if (ring_buffer_flags != RB_BUFFERS_ON)
        return NULL;
 
    /* if the ring buffer is disabled, maybe some have other operate in this ring buffer currently */
    if (atomic_read(&buffer->record_disabled))
        return NULL;
 
    /* If we are tracing schedule, we don't want to recurse */
    resched = ftrace_preempt_disable();
 
    cpu = raw_smp_processor_id();
 
    /* not trace this cpu? */
    if (!cpumask_test_cpu(cpu, buffer->cpumask))
        goto out;
 
    /*get the cpu buffer which associated with this CPU*/
    cpu_buffer = buffer->buffers[cpu];
 
    /* if the cpu buffer is disabled */
    if (atomic_read(&cpu_buffer->record_disabled))
        goto out;
 
    /* change the data length to ring buffer length, include a head in this buffer */
    length = rb_calculate_event_length(length);
    if (length > BUF_PAGE_SIZE)
        goto out;
 
    /* get the length buffer from cpu_buffer */
    event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
    if (!event)
        goto out;
 
    /*
     * Need to store resched state on this cpu.
     * Only the first needs to.
     */
    /* if the preempt is enable and need sched in this cpu, set the resched bit */
    if (preempt_count() == 1)
        per_cpu(rb_need_resched, cpu) = resched;
 
    return event;
 
 out:
    ftrace_preempt_enable(resched);
    return NULL;
}
在进行写操作之前,要首先确认RB是否能被所在的CPU操作. 在这里要经过四个步骤的确认:
1: 确认全局ring_buffer_flags标志是否为RB_BUFFERS_ON.
   该标志是一个全局的RB控制,它控制着任何一个RB的操作, RB_BUFFERS_ON为允许, RB_BUFFERS_OFF为禁用.对应的接口为trace_on()和trace_off().
2: 确认该RB的record_disabled是否为0.
   我们在前面分析RB的结构体时分析过,该成员是控制对应RB的操作
3:确认所在的CPU是否在RB的CPU位图中.
   所在不在RB的CPU位图,表示还尚末为这个CPU分配缓存,暂时不能进行任何操作
4:确认该CPU对应的ring_buffer_per_cpu->record_disabled是否为0.
   它是对单个CPU的控制
 
此外,在RB中的禁用/启用抢占也很有意思,如下代码片段如示:
......
/* If we are tracing schedule, we don't want to recurse */
resched = ftrace_preempt_disable();
......
......
/* if the preempt is enable and need sched in this cpu, set the resched bit */
if (preempt_count() == 1)
    per_cpu(rb_need_resched, cpu) = resched;
......
这段代码的逻辑是:
在禁用抢占之前先检查当前进程是否有抢占,如果有,resched为1,否则为0.然后禁止抢占
在操作完了之后,如果当前是第一次禁止抢占,则将resched保存在RB的per-cpu变量中.
为什么要弄得如此复杂呢? 我们来看一下ftrace_preempt_disable()的代码就明白了:
/**
 * ftrace_preempt_disable - disable preemption scheduler safe
 *
 * When tracing can happen inside the scheduler, there exists
 * cases that the tracing might happen before the need_resched
 * flag is checked. If this happens and the tracer calls
 * preempt_enable (after a disable), a schedule might take place
 * causing an infinite recursion.
 *
 * To prevent this, we read the need_resched flag before
 * disabling preemption. When we want to enable preemption we
 * check the flag, if it is set, then we call preempt_enable_no_resched.
 * Otherwise, we call preempt_enable.
 *
 * The rational for doing the above is that if need_resched is set
 * and we have yet to reschedule, we are either in an atomic location
 * (where we do not need to check for scheduling) or we are inside
 * the scheduler and do not want to resched.
 */
static inline int ftrace_preempt_disable(void)
{
    int resched;
 
    resched = need_resched();
    preempt_disable_notrace();
 
    return resched;
}
这段代码的注释说得很明显了,它是为了防止了无限递归的trace scheduler和防止在原子环境中有进程切换的动作.
其实,说白了,它做这么多动作,就是为了防止在启用抢占的时候,避免调用schedule()进行进程切换.
那,就有一个疑问了,既然无论在当前是否有抢占都要防止有进程切换,为什么不干脆调用preempt_enable_no_resched()来启用抢占呢?
 
我们要分配长度为length的数据长度,那是否它在RB中占的长度就是length呢?肯定不是,因为RB中的数据还是自己的管理头部.至少,在RB中读数据的时候,它需要知道这个数据有多长.
那它究竟在RB中占用多少的长度呢?我们来跟踪rb_calculate_event_length():
static unsigned rb_calculate_event_length(unsigned length)
{
    struct ring_buffer_event event; /* Used only for sizeof array */
 
    /* zero length can cause confusions */
    if (!length)
        length = 1;
 
    /* if length is more than RB_MAX_SMALL_DATA,it need arry[0] to store the data length */
    if (length > RB_MAX_SMALL_DATA)
        length += sizeof(event.array[0]);
 
    /* add the length of struct ring_buffer_event */
    length += RB_EVNT_HDR_SIZE;
    /* must align by 4 */
    length = ALIGN(length, RB_ALIGNMENT);
 
    return length;
}
别看这个函数很短小,却暗含乾坤.从代码中看到,其实我们存入到RB中的数据都是用struct ring_buffer_event来表示的,理解了这个数据结构,上面的代码逻辑自然就清晰了.
该结构体定义如下:
struct ring_buffer_event {
    u32     type:2, len:3, time_delta:27;
    u32     array[];
};
Type表示这块数据的类型,len有时是表示这块数据的长度,time_delta表示这块数据与上一块数据的时间差.从上面的定义可以看出: struct ring_buffer_event的len定义只占三位.它最多只能表示0xb11100的数据大小.另外,在RB中有一个约束,event中的数据必须按4对齐的,那么数据长度的低二位肯定为0,那么ring_buffer_event中的len只能表示从0xb0~0xb11100的长度,即0~28的长度,那么,如果数据长度超过了28,那应该要怎么表示呢?
在数据长度超过28的情况下,会使用ring_buffer_event中的arry[0]表示里面的数据长度,即从后面的数据部份取出4字来额外表示它的长度.
 
Ring buffer event有以下面这几种类型,也就是type的可能值:
enum ring_buffer_type {
    RINGBUF_TYPE_PADDING,
    RINGBUF_TYPE_TIME_EXTEND,
    /* FIXME: RINGBUF_TYPE_TIME_STAMP not implemented */
    RINGBUF_TYPE_TIME_STAMP,
    RINGBUF_TYPE_DATA,
};
 
RINGBUF_TYPE_PADDING: 是指往ring buffer中填充的数据, 这用在页面有剩余或者当前event无效的情况.
RINGBUF_TYPE_TIME_EXTEND: 表示附加的时间差信息,这个信息会存放在arry[0]中.
RINGBUF_TYPE_TIME_STAMP: 表示存放的是时间戳信息, array[0]用来存放tv_nsec, array[1..2]中存放 tv_sec.在现在的代码中还末用到.
RINGBUF_TYPE_DATA:表示里面填充的数据,数据的长度表示方式在前面已经分析过了,这里就不再赘述了.
好了,返回rb_calculate_event_length():
RB_MAX_SMALL_DATA =  28也就是我们上面分析的event中的最小长度,如果要存入的长度大于这个长度的,那么,就需要数据部份的一个32位数用来存放它的长度,因此这种情况下,需要增加sizeof(event.array[0])的长度.另外,event本身也要占用RB的长度,所以需要加上event占的空间,也就是代码中的RB_EVNT_HDR_SIZE. 最后,数据要按4即RB_ALIGNMENT对齐.
那,我们来思考一下,为什么在length为0的情况,需要将其设为1呢?
我们来做个假设,如果length为0,且末做调整,因为event占的大小是两个32位,也就是8.它跟4已经是对齐的了.此时加上length,也就是0.经过4对齐后,它计算出来的长度仍然是event的大小.
在rb_update_event()中对event的各项数据进行赋值时,它的len对象为0.
而对于数据长度超过RB_MAX_SMALL_DATA来说,它的len对象也为0.
此时就无法区别这个对象是长度超过RB_MAX_SMALL_DATA的对象,还是长度为0的对象,也就是无法确定数据后面的一个32位的空间是否是属于这个对象(这里提到了rb_update_event(),我们在后面遇到它再进行详细分析,在这里只需要知道就是调用它来对event的各成员进行初始化就可以了).
 
现在要到ring buffer中去分配存放的空间了,它是在rb_reserve_next_event()中完成的.
可以说,这个函数就是ring buffer的精华部份了.首先,我们要明确一下,ring buffer它要实现的功能是什么?
Ring buffer是用来做存放trace信息用的,既然是做trace.那它就不能对执行效率产生过多的影响,但是它可以占据稍微多一点的空间.然后,每个CPU的每个执行路径trace数据都是放在同一个buffer中的,所以在写数据的时候,要考虑多CPU的竞争情况.
另外,只要我们稍加注意就会发现, ring_buffer_lock_reserve()中调用的rb_reserve_next_event()函数是在所在CPU对应的缓存区上进行操作的.
 
ring_buffer_lock_reserve()和ring_buffer_unlock_commit()是一对函数.从这两个函数的字面意思看来,一个是lock,另一个是unlock.这里的lock机制不是我们之前所讲的类似于mutex, spin_lock之类的lock.因为每个cpu都对应一个缓存区(struct ring_buffer_per_cpu),每个CPU只能读写属于它的缓存区,这样就不需要考虑SMP上的竞争了.因此就不需要使用spinlock, 在这里也不能使用mutex.因为trace在很多不确定情况下会用到,例如function tracer 在每个函数里都会用到,这样就会造成CPU上的所有执行线程去抢用一个mutex的情况.这样会大大降低系统效率,甚至会造成CPU空运转.另外,如果使用mutex,可能会在原子环境中引起睡眠操作.
 
Ring buffer中的lock是指内核抢占,在调用ring_buffer_lock_reserver()时禁止内核抢占,在调用ring_buffer_unlock_commit()是恢复内核抢占.这样在竞争的时候,就只需要考虑中断和NMI了.在这里要注意中断抢占的原则:只有高优先的中断才能抢占低优先级的中断.也就是中断是不能相互嵌套的.例如,A线程正在执行,中断线程B发生了,因此从AàB.在B没有执行完的时候是不可能会切换到A的.如下所示:
 
 
 
另外,在代码注释中经常看到first commit,这个first commit 到底是什么意思呢?
其实它就表示对应CPU缓存区commit之后,第一个从缓存区中的取动作. 对应到上图的 “正常的中断抢占序列”, A是first commit,它被B中断了,B就不是fist commit.
判断是否是first commit是通过下列语句来判断的,代码如下:
cpu_buffer->tail_page == cpu_buffer->commit_page &&
        rb_page_write(cpu_buffer->tail_page) ==
        rb_commit_index(cpu_buffer)
在上面我们分析过,每个CPU的缓存区是从tail页面开始写,从head页面开始读,commit_page则是表示已经提交到的页面.
上面的语句中,如果提交页面是写页面,写序号等于提交序号.就表示当前的位置就是commit的位置也就是first commit.
 
经过上面的分析,相信对该函数的流程有大概的了解了,下面来分析下具体的代码,可以说该函数的每一句代码都值得推敲,采用分段分析的方法,如下:
static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
              unsigned type, unsigned long length)
{
    struct ring_buffer_event *event;
    u64 ts, delta;
    int commit = 0;
    int nr_loops = 0;
 
 again:
    /*
     * We allow for interrupts to reenter here and do a trace.
     * If one does, it will cause this original code to loop
     * back here. Even with heavy interrupts happening, this
     * should only happen a few times in a row. If this happens
     * 1000 times in a row, there must be either an interrupt
     * storm or we have something buggy.
     * Bail!
     */
 
    if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
        return NULL;
在这里,在调用这个函数之前禁止了抢止,中断和NMI在这里存在着竞争,因此在下面的运行中,随时都会被中断/NMI所抢占. 由于在从struct ring_buffer_per_cpu中取页面的时候,会有当前页面空间不足,需要前进一个页面的情况.每次前进一个页面都会跳转到again,此时nr_loops都会增加1, 如果在一次请求中,这样的情况出现了1000次,说明中断抢占的次数太多了,很可能是由于中断风暴(interrupte storm)或者是bug造成的.
 
    /*取当前的时间戳*/
    ts = ring_buffer_time_stamp(cpu_buffer->cpu);
 
    /*
     * Only the first commit can update the timestamp.
     * Yes there is a race here. If an interrupt comes in
     * just after the conditional and it traces too, then it
     * will also check the deltas. More than one timestamp may
     * also be made. But only the entry that did the actual
     * commit will be something other than zero.
     */
     /*只有第一次处于提交状态的请求才能够更新cpu_buffer->write_stamp*/
    if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
        rb_page_write(cpu_buffer->tail_page) ==
        rb_commit_index(cpu_buffer)) {
 
        delta = ts - cpu_buffer->write_stamp;
 
        /* make sure this delta is calculated here */
        barrier();
 
        /* Did the write stamp get updated already? */
        /*如果之前取的当前时间戳小于cpu_buffer->write_stamp说明
         *ring_buffer的write_stamp已经更新过了,也就是在发生了抢占
         */
        /* ----------NOTIC HERE----------*/
        if (unlikely(ts < cpu_buffer->write_stamp))
            delta = 0;
 
        /* 如果更新时间差值大于1 << 27,那就必须要插入一个表示时间
         *  的ring_buffer_event
         */
        if (test_time_stamp(delta)) {
 
            commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
 
            if (commit == -EBUSY)
                return NULL;
 
            if (commit == -EAGAIN)
                goto again;
 
            RB_WARN_ON(cpu_buffer, commit < 0);
        }
    } else
        /* Non commits have zero deltas */
        /*在commit时发生的抢占,它的time stamp delta为0*/
        delta = 0;
 
从上面的if判断可以看到,只有在fist commit的时候才会计算delta,其它的情况下,delta都是0.
我们来思考一下,为什么在确认了是fist commit,进入到了if,还需要进行:
if (unlikely(ts < cpu_buffer->write_stamp))
            delta = 0;
的判断呢? 什么情况下会有当前时间戳小于cpu_buffer最新提交时的时间戳呢?
对应到上面的”正常中断抢占序列”的图,只有在A处才会计算delta时间,在被B,C抢占后,它的delta是为0的.
这个delta到底是用来做什么的呢?它为什么要用这样的判断方式呢?
我们在之前说过,在ring_buffer_per_cpu中的每一块数据都带有一个event的头部,即:
struct ring_buffer_event {
    u32     type:2, len:3, time_delta:27;
    u32     array[];
};
它里面有一个time_delta的成员,占27位.
在每一个页面的头部,即Struct buffer_data_page里面也有一个时间戳,即:
struct buffer_data_page {
    u64     time_stamp;    /* page time stamp */
    local_t     commit;    /* write commited index */
    unsigned char   data[];    /* data of buffer page */
}
那这几个时间戳有什么样的关联呢?
在ring_buffer_per_cpu中有一个timestamp,它表示最近commit时的时间戳.
每次切换进一个新页面时,该页面对应的:
buffer_data_page->time_stamp会记录当前的时间戳.
即buffer_date_page->time_stamp记录页面被切换成写页面时的时间戳.
 
而ring_buffer_event->time_delta表示当前时间和上一次commit时间即ring_buffer_per_cpu->time_stamp的差值.
综上所述,存在以下关系:
页面中的第一个event, event1在进行写操作时的时间戳为:
buffer_data_page->time_stamp + ring_buffer_event1->time_delta.
第二个event,event2在进行写操作时的时间戳为:
buffer_data_page->time_stamp+ring_buffer_event1->time_delta+
ring_buffer_event2->time_delta.
 
依次类推,不过有种情况是特别的,即RINGBUF_TYPE_TIME_EXTEND类型的EVENT,它是为了有时delta时间超过27位时,扩展了一个32位用来存放的时间戳.这也就是上面代码中的if (test_time_stamp(delta)).另外需要注意,这里的返回值commit,只有在fist commit的时候才会为1.
 
这段代码有个值得思考的地方,也就是上面代码的”----------NOTIC HERE----------“注释处.
在这里判断了它是first commit,为什么会有可能出现当前的时间戳比最近提交的时间戳还要小呢?
试想一下,如果在”----------NOTIC HERE----------”处发生了中断,这个中断执行路径反而会先从RB中取得空间,然后commit,就会出现这样的情况了.因此,我们要注意,fist commit是指最近commit后的一个状态,而不是第一个进入rb_reserve_next_event()的状态.
 
上面代码中的rb_add_time_stamp()子函数的执行流程跟我们在后面要分析的部份差不多,因此在这里就不对它进行详细分析了.
 
/*从ring_buffer中取出event*/
    event = __rb_reserve_next(cpu_buffer, type, length, &ts);
    if (PTR_ERR(event) == -EAGAIN)
        goto again;
 
    if (!event) {
        if (unlikely(commit))
            /*
             * Ouch! We needed a timestamp and it was commited. But
             * we didn't get our event reserved.
             */
            rb_set_commit_to_write(cpu_buffer);
        return NULL;
    }
 
    /*
     * If the timestamp was commited, make the commit our entry
     * now so that we will update it when needed.
     */
    if (commit)
        rb_set_commit_event(cpu_buffer, event);
    else if (!rb_is_commit(cpu_buffer, event))
        delta = 0;
 
    /*event->time_delta表示的是距离上次commit时的时间差*/
    event->time_delta = delta;
 
    return event
}
剩下的代码就很好理解了,如果取得的event为空,说明发生了错误,另外在commit为1的情况下是必须要commit的,因为它已经更新了ring_buffer_per_cpu.
另外,在上面的:
if (commit)
        rb_set_commit_event(cpu_buffer, event);
else if (!rb_is_commit(cpu_buffer, event))
        delta = 0;
 
为什么需要再次判断rb_is_commit()呢?
这是因为,可能在__rb_reserve_next()之前有中断抢占了当前执行路径,而先从RB取得空间,这种情况下,先取得RB空间的,成了first commit.
注意在这里的条件是” __rb_reserve_next()”之前,因为在后面我们会看到,在__rb_reserve_next()中是用原子操作来避免竞争的,实际上,__rb_reserve_next()使写操作串行化,即一个一个按顺序通过它.因为只有第一个通过__rb_reserve_next()才会是first commit状态,所以,在它的后面的话,就无所谓抢占了.
 
这个函数就分析到这里了,在里面有一个重要的子函数,即__rb_reserve_next(),代码较长,用分段分析的方式如下:
static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
          unsigned type, unsigned long length, u64 *ts)
{
    struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
    unsigned long tail, write;
    struct ring_buffer *buffer = cpu_buffer->buffer;
    struct ring_buffer_event *event;
    unsigned long flags;
 
    commit_page = cpu_buffer->commit_page;
    /* we just need to protect against interrupts */
    barrier();
    tail_page = cpu_buffer->tail_page;
    /*local_add_return()是一个原子操作,起保护作用.
     *write是加上了length之后的位置,tail是之前的位置
     */
    write = local_add_return(length, &tail_page->write);
    tail = write - length;
注意这里的临界条件,对struct buffer_page->write的更新是采用的原子操作,即它的操作是不能被打断的,这也是一种临界区的保护方式.
在这里的临界操作,需要注意:
write = local_add_return(length, &tail_page->write);
tail = write - length;
它是先进行原子加,然后再write-length取得加之前的位置,这样就保证tail对应的刚好是取出来的那缓存区.
 
    /* See if we shot pass the end of this buffer page */
    /*如果超过了一个页面,那就需要前进一个页面了*/
    if (write > BUF_PAGE_SIZE) {
        struct buffer_page *next_page = tail_page;
 
        /*因此这里要更改tail_page的指向了,不能再有竞争的情况了
         *因为调用local_irq_save()来禁止中断,调用__raw_spin_lock()来保护
         *ring_buffer 的读操作
         */
        /*---------NOTICE HERE----------*/
        local_irq_save(flags);
/*
         * Since the write to the buffer is still not
         * fully lockless, we must be careful with NMIs.
         * The locks in the writers are taken when a write
         * crosses to a new page. The locks protect against
         * races with the readers (this will soon be fixed
         * with a lockless solution).
         *
         * Because we can not protect against NMIs, and we
         * want to keep traces reentrant, we need to manage
         * what happens when we are in an NMI.
         *
         * NMIs can happen after we take the lock.
         * If we are in an NMI, only take the lock
         * if it is not already taken. Otherwise
         * simply fail.
         */
        if (unlikely(in_nmi())) {
            if (!__raw_spin_trylock(&cpu_buffer->lock))
                goto out_reset;
        } else
            __raw_spin_lock(&cpu_buffer->lock);
如果write > BUF_PAGE_SIZE,说明当前的页面已经不够空间来存放一个event了,因此,我们需要切换到下一个页面.既然要切换页面,那就需要有同步措施了,在这里采用的是禁中断和自旋锁cpu_buffer->lock, reader在读RB的时候也会持有该锁,这样就同步了写者与读者. 在这里要注意,禁中断只是禁止外部设备的中断响应,并不能禁止NMI, 所以在这里还需要NMI的情况特殊考虑,如果是在NMI的情况,如果自旋锁被占用,就立即返回,我们不能在这个里面等待太久.
 
        /*使next_page指向tail_page的下一个页面*/
        rb_inc_page(cpu_buffer, &next_page);
 
        head_page = cpu_buffer->head_page;
        reader_page = cpu_buffer->reader_page;
 
        /* we grabbed the lock before incrementing */
        if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
            goto out_unlock;
 
        /*
         * If for some reason, we had an interrupt storm that made
         * it all the way around the buffer, bail, and warn
         * about it.
         */
         /*可能是前进的次数太多了也可能是因为ring_buffer的页面太少了
          *导致了next_page和commit_page重合的情况
          */
        if (unlikely(next_page == commit_page)) {
            WARN_ON_ONCE(1);
            goto out_unlock;
        }
进入到自旋锁的保护区之后,我们就可以前进一个页面了.这里有几种情况:
1: 前进之后的页面不可能和reader_page重合, 我们在后面可以看到,reader_page是一个孤立的页
面,不位于cpu_buffer->pages链表中.
2: commit页面与前进之后的页面重合,这有可能是前进次数太多,即中断次数太多(还来不及commit),也有可能是RB的页面数目太少.
 
        /*前进一个页面之后碰到了head_page,即ring_buffer已经满了*/
        /*如果带有RB_FL_OVEWRITE标志,就将旧的数据清除掉*/
        if (next_page == head_page) {
            if (!(buffer->flags & RB_FL_OVERWRITE))
                goto out_unlock;
 
            /* tail_page has not moved yet? */
            if (tail_page == cpu_buffer->tail_page) {
                /* count overflows */
                rb_update_overflow(cpu_buffer);
 
                rb_inc_page(cpu_buffer, &head_page);
                cpu_buffer->head_page = head_page;
                cpu_buffer->head_page->read = 0;
            }
        }
如果前进一个页面之后,跟head_page重合了,说明cpu buffer已经满了,如果带有RB_FL_OVERWRITE标志的话,我们就可以将head_page中的数据冲刷掉.
在这里需要注意,为什么这里要再判断?
if (tail_page == cpu_buffer->tail_page)
这是因为在持有自旋锁之前是有竞争的,在上面代码的
”/*---------NOTICE HERE----------*/”注释处,我们来考虑一下,如果此时有路径 A运行到了NOTICE HERE,发生了中断,中断路径B也进入了NOTICE HERE,然后更新了cpu_buffer->tail_page,而后退出.此时再切换回路径A,A会继续往下执行,实际上,这时候cpu_buffer->tail_page已经更新过了.
 
如果出现重合的现象,我们只需要将head_page前移就可以了,这里不需要将head_page的内容清空,因为在取到下一个页面的时候,会调用:
            local_set(&next_page->write, 0);
            local_set(&next_page->page->commit, 0);
将其重置.
我们跟踪看一下rb_update_overflow()函数的代码片段,这个函数很简单,但里面有一个值得我们注意的地方:
static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
{
    ......
    for (head = 0; head < rb_head_size(cpu_buffer);
         head += rb_event_length(event)) {
 
        event = __rb_page_index(cpu_buffer->head_page, head);
        if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
            return;
         ......
    }
}
疑问,这通外里为什么不可能遍历出是null的event呢?
Null的event是指:
event->type == RINGBUF_TYPE_PADDING && event->time_delta == 0;
它是一个页面不足以存放一个event后的填充数据.
我们来看一下它的循环判断条件:
head < rb_head_size(cpu_buffer);
rb_head_size()定义如下:
static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
{
    return rb_page_commit(cpu_buffer->head_page);
}
即commit的位置.
其实,这里断定不可能出现null event的原因是,在commit的时候,不会commit 填充数据.它只会commit有效数据,这在我们后面的分析中可以得到确认.
 
        /*
         * If the tail page is still the same as what we think
         * it is, then it is up to us to update the tail
         * pointer.
         */
         /*如果tail_page没有发生更改,就可以更改tail_page的指向了
          *即前进一个页面
          */
        if (tail_page == cpu_buffer->tail_page) {
            local_set(&next_page->write, 0);
            local_set(&next_page->page->commit, 0);
            cpu_buffer->tail_page = next_page;
 
            /* reread the time stamp */
            /*更新页面转入写页面时的时间戳*/
            *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
            cpu_buffer->tail_page->page->time_stamp = *ts;
        }
分析这小段代码要结合在上段代码中的抢占分析,如果没有抢占,或者是第一个递增此页面,就可以更新cpu_buffer->tail_page的指向了.在这里要注意,对每个取到的页面都是进行初始化,但没必要将整个页面都清零.只需要将它的写位置和提交位置置为0就可以了.
另外,我们在这里也可以看到,我们将这个页面的时间戳置为了该页面切换成写页面的时间戳.这个时间戳后面还会调整,接着看.
 
        /*
         * The actual tail page has moved forward.
         */
         /*ring_buffer后还有一段空闲的区域,将它赋为RINGBUF_TYPE_PADDING*/
        if (tail < BUF_PAGE_SIZE) {
            /* Mark the rest of the page with padding */
            event = __rb_page_index(tail_page, tail);
            event->type = RINGBUF_TYPE_PADDING;
        }
 
        /* 恢复tail_page->write的值,因为在local_add_return()之后存在竞争,
         * 即在很多个执行路径中多次相加后,才会有禁中断
         * 和自旋锁保护
         */
        if (tail <= BUF_PAGE_SIZE)
            /* Set the write back to the previous setting */
            local_set(&tail_page->write, tail);
 
        /*
         * If this was a commit entry that failed,
         * increment that too
         */
         /*如果是一个fist commit状态的页面,commit it*/
        if (tail_page == cpu_buffer->commit_page &&
            tail == rb_commit_index(cpu_buffer)) {
            rb_set_commit_to_write(cpu_buffer);
        }
 
        /*更新状态完成,释放临界区*/
        __raw_spin_unlock(&cpu_buffer->lock);
        local_irq_restore(flags);
 
        /* fail and let the caller try again */
        /*返回EAGAIN,表示重新到ring_buffer中分配event*/
        return ERR_PTR(-EAGAIN);
    }
可能看到这里,大家都有点疑问,为什么需要对tail做这么多次判断呢?
这是因为,这里有个特殊的情况,如下图示:
 
当运行到1的时候,是会有竞争情况的,如下示:
1:执行路径A运行到1的时候,有write > BUF_PAGE_SIZE的情况,假设A是在这次执行中,最先发生write > BUF_PAGE_SIZE的.这时竞争发生,有其它的中断过来了.
2:执行路径B抢占了执行路径A, 此时经过local_add_return()计算后,仍然会有:
write >BUF_PAGE_SIZE的情况.,运行到1处,又有其它中断过来了.其实它这里计算出来的write值是在上一次的基础上计算出来的
3:执行路径C抢点了执行路径B, ......
 
经过上面的分析,我们可得知,只有A,也就是第一个发生write > BUF_PAGE_SIZE的路径的tail才会小于BUF_PAGE_SIZE,因为其它的路径都是在超过BUF_PAGE_SIZE的基础上计算出来的.
正是因为这样,所以在2处才有tail < BUG_PAGE_SIZE的判断,并且更新tail_page->write.这样,在恢复到A的时候,就会将tail_page->write回复到原始值了.
 
    /* We reserved something on the buffer */
    /*不可能会出现write > BUF_PAGE_SIZE的情况*/
    if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
        return NULL;
 
    /*取出并更新event*/
    event = __rb_page_index(tail_page, tail);
    rb_update_event(event, type, length);
 
    /*
     * If this is a commit and the tail is zero, then update
     * this page's time stamp.
     */
     /* 如果当前是一个新页面,而且是一个fist commit.
       * 则更新Struct buffer_data_page -> time_stamp,即该页面开始写时的时间戳
       */
    if (!tail && rb_is_commit(cpu_buffer, event))
        cpu_buffer->commit_page->page->time_stamp = *ts;
 
    return event;
 
 out_unlock:
    /* reset write */
    if (tail <= BUF_PAGE_SIZE)
        local_set(&tail_page->write, tail);
 
    __raw_spin_unlock(&cpu_buffer->lock);
    local_irq_restore(flags);
    return NULL;
}
剩下的代码就简单了,运行到这里,表明当前页面有足够的空间容纳要分配的event, 直接取得tail对应的空间即可.
在这里需要注意的是,如果是第一次从这个页面分配空间且处于first commit的状态,需要将页面的时间戳更改成当前的时间戳.
 
4.2: ring_buffer_unlock_commit()分析
在前面的分析中, ring_buffer_lock_reserve()从RB中取出了空间,可以调用rb_event_data()返回event中实际存放数据的位置,将数据写入event之后,我们就需要进行commit了.这个动作就是在ring_buffer_unlock_commit()中完成的,代码如下:
 
int ring_buffer_unlock_commit(struct ring_buffer *buffer,
                  struct ring_buffer_event *event,
                  unsigned long flags)
{
    struct ring_buffer_per_cpu *cpu_buffer;
    int cpu = raw_smp_processor_id();
 
    cpu_buffer = buffer->buffers[cpu];
 
    rb_commit(cpu_buffer, event);
 
    /*
     * Only the last preempt count needs to restore preemption.
     */
    if (preempt_count() == 1)
        ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
    else
        preempt_enable_no_resched_notrace();
 
    return 0;
}
Ftrace中的抢占恢复我们在前面分析ring_buffer_lock_reserve()的时候就已经分析过了,这里就不再重复,然后调用rb_commit()进行具体的commit动作,包括更新cpu_buffer的write_tamp,将commit迁移到write位置,这个函数比较简单,这里就不做详细分析了.
 
五: ring_buffer的读操作
RB的读操作没有写操作那么复杂,具体的读操作有两种方式,一种是迭代器的读,另一种采用reader_page进行切换读,下面分别对这两种方式进行详细的分析.
 
5.1: 迭代器方式的读操作
这种读操作从它的名称上就可以看出来,它就是遍历每一个commit页面,然后将页数中的event读出来,这种读方式不会更改RB中的数据,下面看一下具体的实现:
 
5.1.1: ring_buffer_read_start()
ring_buffer_read_start()用来初始化一个读ring buffer的迭代器,代码如下:
 
struct ring_buffer_iter *
ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
{
    struct ring_buffer_per_cpu *cpu_buffer;
    struct ring_buffer_iter *iter;
    unsigned long flags;
 
    /*如果该CPU不是ring buffer的有效CPU,非法*/
    if (!cpumask_test_cpu(cpu, buffer->cpumask))
        return NULL;
 
    /*分配一个迭代器*/
    iter = kmalloc(sizeof(*iter), GFP_KERNEL);
    if (!iter)
        return NULL;
 
    /* 取得对应cpu的ring_buffer_per_cpu */
    cpu_buffer = buffer->buffers[cpu];
 
    /*迭代器的cpu_buffer指向对应CPU的ring_buffer_per_cpu*/
    iter->cpu_buffer = cpu_buffer;
    /*禁止该buffer的写操作*/
    atomic_inc(&cpu_buffer->record_disabled);
    /*等待所有的写操作退出*/
    synchronize_sched();
 
    /* 读操作加锁, 因为可以从不同的CPU上读因此
     * 需要持有cpu_buffer->reader_lock
     *另外,为了避免对ring_buffer_per_cpu的竞争操作,需要
     *持有cpu_buffer->lock
     */
    spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
    __raw_spin_lock(&cpu_buffer->lock);
    /*初始化迭代器,即将iter->head_page指向读页面
     *iter->head指向读页面的读取位置*/
    rb_iter_reset(iter);
    __raw_spin_unlock(&cpu_buffer->lock);
    spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 
    return iter;
}
该操作比较简单,就是分配并初始化了一个ring_buffer_iter, 我们来看一下具体的初始化过程:
static void rb_iter_reset(struct ring_buffer_iter *iter)
{
    struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 
    /* Iterator usage is expected to have record disabled */
    /*如果reader_page->list里空的,就将读的起始页面
     *指向head_page
     *否则指向reader_page
     */
    if (list_empty(&cpu_buffer->reader_page->list)) {
        iter->head_page = cpu_buffer->head_page;
        iter->head = cpu_buffer->head_page->read;
    } else {
        iter->head_page = cpu_buffer->reader_page;
        iter->head = cpu_buffer->reader_page->read;
    }
 
    /*如果该页面已经操作了, 取cpu_buffer->read_stamp,
     *否则取page->timer_stamp
     */
    if (iter->head)
        iter->read_stamp = cpu_buffer->read_stamp;
    else
        iter->read_stamp = iter->head_page->page->time_stamp;
}
从我们上面分析的ring_buffer初始化过程中看到,reader_page是一个单独的面面,且它的链表初始化是为空的,如果没有对reader_page进行特殊操作的话,那就是从head_page开始读. 那这个read_page怎么用呢? 它是用来做reader方式的读操作的,我们在后面再来进行分析.
再来看一下时间戳的信息,如果页面没有被读过,那就将read_stamp置为页面的时间戳.在上面已经分析过,页面的时间戳,是将页面切换成写页面时的时间戳(或者是页面第一次写时的时间戳),那就是这个页面的时间起始点.
那cpu_buffer->read_stamp是什么意思呢? 先将它放一边,接下来继续看它的读操作.
 
5.1.2: ring_buffer_iter_peek()
在上面初始化了一个迭代器后,现在就要开始真正的读操作了,代码如下:
struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
{
    struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
    struct ring_buffer_event *event;
    unsigned long flags;
 
 again:
    spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
    event = rb_iter_peek(iter, ts);
    spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 
    /*这个event是填充数据,比如一个页面已经容不下
     *一个event了,这时,它的剩余空间就是RINGBUF_TYPE_PADDING
     *类型
     *遇到这样的情况,继续读下一个即可
     */
    if (event && event->type == RINGBUF_TYPE_PADDING) {
        cpu_relax();
        goto again;
    }
 
    return event;
}
一眼就可以看出,它的实际操作是在rb_iter_peek()中完成的,代码如下:
static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
{
    struct ring_buffer *buffer;
    struct ring_buffer_per_cpu *cpu_buffer;
    struct ring_buffer_event *event;
    int nr_loops = 0;
 
    /*如果CPU buffer的数据已经读完了*/
    if (ring_buffer_iter_empty(iter))
        return NULL;
 
    cpu_buffer = iter->cpu_buffer;
    buffer = cpu_buffer->buffer;
 
 again:
    /*
     * We repeat when a timestamp is encountered. It is possible
     * to get multiple timestamps from an interrupt entering just
     * as one timestamp is about to be written. The max times
     * that this can happen is the number of nested interrupts we
     * can have. Nesting 10 deep of interrupts is clearly
     * an anomaly.
     */
     /*如果重试次数超过了10次,那表示ring buffer中有太多的
      * 的附加数据(比如忽略的数据,时间戳数据,等)
      */
    if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
        return NULL;
    /*  如果该CPU buffer已经空了*/
    if (rb_per_cpu_empty(cpu_buffer))
        return NULL;
    /*取iter->head_page对应的第一个event*/
    event = rb_iter_head_event(iter);
 
    switch (event->type) {
    /*如果是一段填充数据*/
    case RINGBUF_TYPE_PADDING:
        /*是一段完全的空闲整充区*/
        if (rb_null_event(event)) {
            rb_inc_iter(iter);
            goto again;
        }
        /*是被忽略的内容*/
        rb_advance_iter(iter);
        return event;
    /*如果附加的是一段时间戳*/
    case RINGBUF_TYPE_TIME_EXTEND:
        /* Internal data, OK to advance */
        rb_advance_iter(iter);
        goto again;
 
    case RINGBUF_TYPE_TIME_STAMP:
        /* FIXME: not implemented */
        rb_advance_iter(iter);
        goto again;
    /*取出来的是一段数据*/
    case RINGBUF_TYPE_DATA:
        /*取到数据了,更新时间戳之后退出*/
        if (ts) {
            *ts = iter->read_stamp + event->time_delta;
            ring_buffer_normalize_time_stamp(buffer,
                             cpu_buffer->cpu, ts);
        }
        return event;
 
    default:
        BUG();
    }
 
    return NULL;
}
这段代码比较简单,就是从ring buffer中取数据,然后更新时间戳.在这里我们需要注意一种RINGBUF_TYPE_PADDING类型的特例,如下所示:
    case RINGBUF_TYPE_PADDING:
        /*是一段完全的空闲整充区*/
        if (rb_null_event(event)) {
            rb_inc_iter(iter);
            goto again;
        }
        /*是被忽略的内容*/
        rb_advance_iter(iter);
        return event;
什么叫rb_null_event呢,代码中的判断是这样的:
static inline int rb_null_event(struct ring_buffer_event *event)
{
    return event->type == RINGBUF_TYPE_PADDING && event->time_delta == 0;
}
可以得到,类型是RINGBUF_TYPE_PADDING,时间戳间隔是0, 这样的情况通常是填充页面的空闲部份. 比如一个页面不够放一个event了,就将该页面的剩余部份置为null event,然后将event存入下一个页面中.
 
RINGBUF_TYPE_PADDING还有一种类型是rb_discarded_event, 代码中的判断如下:
static inline int rb_discarded_event(struct ring_buffer_event *event)
{
    return event->type == RINGBUF_TYPE_PADDING && event->time_delta;
}
它跟null event的差别是时间戳不为空. 这样的情况经常是,用户不想显示ring buffer中的对应event,就将其设为这种类型, (比如event trace中的filter), 它的设置接口是ring_buffer_event_discard(),如下所示:
void ring_buffer_event_discard(struct ring_buffer_event *event)
{
    event->type = RINGBUF_TYPE_PADDING;
    /* time delta must be non zero */
    if (!event->time_delta)
        event->time_delta = 1;
}
 
回到上面的rb_iter_peek()中,这个函数里面有个重要的子函数rb_advance_iter(),代码如下:
static void rb_advance_iter(struct ring_buffer_iter *iter)
{
    struct ring_buffer *buffer;
    struct ring_buffer_per_cpu *cpu_buffer;
    struct ring_buffer_event *event;
    unsigned length;
 
    cpu_buffer = iter->cpu_buffer;
    buffer = cpu_buffer->buffer;
 
    /*
     * Check if we are at the end of the buffer.
     */
     /*检查该页面是否已经读完了*/
    if (iter->head >= rb_page_size(iter->head_page)) {
        /*前面的if加上这里的RB_WARN_ON()表示读时不可能
         *会超过commit_page的范围, commit_page的提交序号最多
         *只会到page_size的位置
         *在正常情况下,RB中没数据了,就不会进入到ring_buffer_iter_peek():
         *在rb_iter_peek()刚开始的判断中就会被返回
         */
        if (RB_WARN_ON(buffer,
                   iter->head_page == cpu_buffer->commit_page))
            return;
        /*必须要前进一个页面*/
        rb_inc_iter(iter);
        return;
    }
 
    /*取得当前的event*/
    event = rb_iter_head_event(iter);
    /*计算event的长度*/
    length = rb_event_length(event);
 
    /*
     * This should not be called to advance the header if we are
     * at the tail of the buffer.
     */
     /*如果超过了提交的范围, 这是不可能存在的*/
    if (RB_WARN_ON(cpu_buffer,
               (iter->head_page == cpu_buffer->commit_page) &&
               (iter->head + length > rb_commit_index(cpu_buffer))))
        return;
 
    /*更新iter的时间戳*/
    rb_update_iter_read_stamp(iter, event);
 
    iter->head += length;
 
    /* check for end of page padding */
    /*如果该页面已经读完了而且没有超过commit page
     *再将iter前进
     */
    if ((iter->head >= rb_page_size(iter->head_page)) &&
        (iter->head_page != cpu_buffer->commit_page))
        rb_advance_iter(iter);
}
该接口用来在struct ring_buffer_per_cpu中前进一个event,它有三种可能的情况:
1: 如果该页面已经处理完了,那就转入下一个页面
2: 如果页面已经读完了(读位置等于提交位置),不需要进行任何操作了,返回.
3: 将页面的读位置更新到下一个event的位置,然后更新迭代器的时间戳,返回
 
另外,如果下一个event落到了下一个页面中,那就再调用一下本函数,那迁移到一个页面,如下代码所示:
    if ((iter->head >= rb_page_size(iter->head_page)) &&
        (iter->head_page != cpu_buffer->commit_page))
        rb_advance_iter(iter)
 
5.1.3: ring_buffer_read_finish
取完缓存区中的数据之后,还需要做清理的工作,这是在ring_buffer_read_finish()中完成的,代码如下:
void
ring_buffer_read_finish(struct ring_buffer_iter *iter)
{
    struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 
    /*恢复ring_buffer_per_cpu的使用*/
    atomic_dec(&cpu_buffer->record_disabled);
    /*释放迭代器占用的空间*/
    kfree(iter);
}
 
现在迭代器方式的读操作分析完了,我们来总结一下读操作的同步机制:
1):在读操作开始时,就会禁用该CPU上的RB写
2):在整个读操作时,持有cpu_buffer->reader_lock,且禁中断
为什么需要这样做呢? 这个问题值得好好挖掘一下:
1): 为什么在读的时候要禁止该CPU上的写?
在write的时候,如果缓存区满了,会清空head,然后将head转向下一个位置. 假若进行这个操作的时候,Read正在读head这个页面,那读操作就紊乱了. 有人可能会说,那在write的时候,如果要清空head就持有reader_lock锁不就行了么? 这样当然是可以的,只是相于来说比较繁锁
 
2): 为什么要持有reader_lock锁呢?
对于不同的迭代器读操作来说,它们是没有竞争的,因为它们操作的是同一个迭代器,这里持有reader_lock锁主要是为了跟reader方式的读操作保持同步,因为在reader方式下,会更改head页面,这些操作我们在稍后的分析中会看到.
 
5.2: reader方式的读操作
我们在上面的分析中多次提到了reader方式的读操作,这种方式要使用struct ring_buffer_per_cpu中的reader_page成员
它的接口为rb_buffer_peek(), 代码如下:
struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
{
    struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
    struct ring_buffer_event *event;
    unsigned long flags;
 
    /*如果ring buffer中不含此CPU,退出*/
    if (!cpumask_test_cpu(cpu, buffer->cpumask))
        return NULL;
 
 again:
    /*加锁,从ring buffer中取数据,然后解锁*/
    spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
    event = rb_buffer_peek(buffer, cpu, ts);
    spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 
    /*如果取到的数据是填充数据,再取*/
    if (event && event->type == RINGBUF_TYPE_PADDING) {
        cpu_relax();
        goto again;
    }
 
    return event;
}
这段代码很简单,首先为了保持Read操作的同步,持有reader_lock锁,然后调用rb_buffer_peek()到RB中取数据,如果取出的数据是填充数据,则再取一次.
核心操作是在rb_buffer_peek()中完成的,代码如下:
static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
{
    struct ring_buffer_per_cpu *cpu_buffer;
    struct ring_buffer_event *event;
    struct buffer_page *reader;
    int nr_loops = 0;
 
    /* 取CPU对应的ring_buffer_per_cpu */
    cpu_buffer = buffer->buffers[cpu];
 
 again:
    /*
     * We repeat when a timestamp is encountered. It is possible
     * to get multiple timestamps from an interrupt entering just
     * as one timestamp is about to be written. The max times
     * that this can happen is the number of nested interrupts we
     * can have.  Nesting 10 deep of interrupts is clearly
     * an anomaly.
     */
     /*如果重复次数超过了10, 说明ring buffer中存放了太多的
     *无用数据*/
    if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
        return NULL;
 
    /*取出当前的reader页面*/
    reader = rb_get_reader_page(cpu_buffer);
    if (!reader)
        return NULL;
    /*从reader页面中取数据*/
    event = rb_reader_event(cpu_buffer);
 
    /*下面的逻辑跟iter方式的一样,只是这里记录时候戳采用的
     *是cpu_buffer->read_stamp
     */
    switch (event->type) {
    case RINGBUF_TYPE_PADDING:
        if (rb_null_event(event))
            RB_WARN_ON(cpu_buffer, 1);
        /*
         * Because the writer could be discarding every
         * event it creates (which would probably be bad)
         * if we were to go back to "again" then we may never
         * catch up, and will trigger the warn on, or lock
         * the box. Return the padding, and we will release
         * the current locks, and try again.
         */
        rb_advance_reader(cpu_buffer);
        return event;
 
    case RINGBUF_TYPE_TIME_EXTEND:
        /* Internal data, OK to advance */
        rb_advance_reader(cpu_buffer);
        goto again;
 
    case RINGBUF_TYPE_TIME_STAMP:
        /* FIXME: not implemented */
        rb_advance_reader(cpu_buffer);
        goto again;
 
    case RINGBUF_TYPE_DATA:
        if (ts) {
            *ts = cpu_buffer->read_stamp + event->time_delta;
            ring_buffer_normalize_time_stamp(buffer,
                             cpu_buffer->cpu, ts);
        }
        return event;
 
    default:
        BUG();
    }
 
    return NULL;
}
这里的代码逻辑跟iter方式的读操作很相似,结合代码中的注释应该很容易理解这段代码,我们来看一下里面的几个重要的操作:
static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
{
    struct buffer_page *reader = NULL;
    unsigned long flags;
    int nr_loops = 0;
 
    /*因为写操作会更改RB的页面,所以这里必须要跟
     *写操作保持同步,即持有cpu_buffer->lock锁
     */
    local_irq_save(flags);
    __raw_spin_lock(&cpu_buffer->lock);
 
 again:
    /*
     * This should normally only loop twice. But because the
     * start of the reader inserts an empty page, it causes
     * a case where we will loop three times. There should be no
     * reason to loop four times (that I know of).
     */
    if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
        reader = NULL;
        goto out;
    }
 
    reader = cpu_buffer->reader_page;
 
    /* If there's more to read, return this page */
    /*如果该页面中还有数据,返回该页面*/
    if (cpu_buffer->reader_page->read < rb_page_size(reader))
        goto out;
 
    /* Never should we have an index greater than the size */
    /*读位置超过了commit 位置,这是不可能出现的*/
    if (RB_WARN_ON(cpu_buffer,
               cpu_buffer->reader_page->read > rb_page_size(reader)))
        goto out;
 
    /* check if we caught up to the tail */
    reader = NULL;
    /*读页面就是提交页面, 而且读页面中没有数据可读了,
     *说明缓存区中已经没有数据可读了
     */
    if (cpu_buffer->commit_page == cpu_buffer->reader_page)
        goto out;
 
    /*
     * Splice the empty reader page into the list around the head.
     * Reset the reader page to size zero.
     */
    /*cpu_buffer->reader_page中的数据已经全部都读完了,将它和
     *cpu_buffer->head_page调换一下位置
     */
    reader = cpu_buffer->head_page;
    cpu_buffer->reader_page->list.next = reader->list.next;
    cpu_buffer->reader_page->list.prev = reader->list.prev;
 
    local_set(&cpu_buffer->reader_page->write, 0);
    local_set(&cpu_buffer->reader_page->page->commit, 0);
 
    /* Make the reader page now replace the head */
    reader->list.prev->next = &cpu_buffer->reader_page->list;
    reader->list.next->prev = &cpu_buffer->reader_page->list;
 
    /*
     * If the tail is on the reader, then we must set the head
     * to the inserted page, otherwise we set it one before.
     */
    cpu_buffer->head_page = cpu_buffer->reader_page;
 
    /*因为切换进来的reader_page是可写的,因此,在不越过commit_page的
*情况下,head_page前进一个页面
     */
    if (cpu_buffer->commit_page != reader)
        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
 
    /* Finally update the reader page to the new head */
    cpu_buffer->reader_page = reader;
    rb_reset_reader_page(cpu_buffer);
 
    goto again;
 
 out:
    __raw_spin_unlock(&cpu_buffer->lock);
    local_irq_restore(flags);
 
    return reader;
}
关于reader操作的原理可以看一下ring_buffer.c中自带的注释:
/*
 * The ring buffer is made up of a list of pages. A separate list of pages is
 * allocated for each CPU. A writer may only write to a buffer that is
 * associated with the CPU it is currently executing on.  A reader may read
 * from any per cpu buffer.
 *
 * The reader is special. For each per cpu buffer, the reader has its own
 * reader page. When a reader has read the entire reader page, this reader
 * page is swapped with another page in the ring buffer.
 *
 * Now, as long as the writer is off the reader page, the reader can do what
 * ever it wants with that page. The writer will never write to that page
 * again (as long as it is out of the ring buffer).
 *
 * Here's some silly ASCII art.
 *
 *   +------+
 *   |reader|          RING BUFFER
 *   |page  |
 *   +------+        +---+   +---+   +---+
 *                   |   |-->|   |-->|   |
 *                   +---+   +---+   +---+
 *                     ^               |
 *                     |               |
 *                     +---------------+
 *
 *
 *   +------+
 *   |reader|          RING BUFFER
 *   |page  |------------------v
 *   +------+        +---+   +---+   +---+
 *                   |   |-->|   |-->|   |
 *                   +---+   +---+   +---+
 *                     ^               |
 *                     |               |
 *                     +---------------+
 *
 *
 *   +------+
 *   |reader|          RING BUFFER
 *   |page  |------------------v
 *   +------+        +---+   +---+   +---+
 *      ^            |   |-->|   |-->|   |
 *      |            +---+   +---+   +---+
 *      |                              |
 *      |                              |
 *      +------------------------------+
 *
 *
 *   +------+
 *   |buffer|          RING BUFFER
 *   |page  |------------------v
 *   +------+        +---+   +---+   +---+
 *      ^            |   |   |   |-->|   |
 *      |   New      +---+   +---+   +---+
 *      |  Reader------^               |
 *      |   page                       |
 *      +------------------------------+
 *
 *
 * After we make this swap, the reader can hand this page off to the splice
 * code and be done with it. It can even allocate a new page if it needs to
 * and swap that into the ring buffer.
 *
 * We will be using cmpxchg soon to make all this lockless.
 *
 */
其实,它就是利用reader_page来替换了当前head_page页,这样就不会影响到写操作.
 
在这里,我们需要注意的是,经过上面的操作之后, 有可能tail_page和reader_page在同一个页面上,这种情况会在RB开始写的时候,这时候的tail_page, head_page都是重合在一起的,我们可以根据上面的代码逻辑推理一下,假设在刚开始的状态,写了一个不足一个页面的数据,reader开始读,reader_page替换掉head_page之后,页面会成为这个样子:
那么,在这时候,tail_page commit_page和reader_page是重合在一起的.
在上面的这种情况下,因为切换出来的head_page,也就是new_reader_page没有更改它的页面前向指针与后向指针,因此,tail_page在前进的时候,会前进到head_page的下一个页面.但是在这种情况下,要注意head_page是没有数据的,所以,在iter读方式下,如果reader_page是被切换出来的head_page(也就是代码中说的,reader_page的链表不为空),读页面是从reader_page开始的.
 
另外,还需要注意一点的是,代码中一个比较诡异的注释:
    /*
     * This should normally only loop twice. But because the
     * start of the reader inserts an empty page, it causes
     * a case where we will loop three times. There should be no
     * reason to loop four times (that I know of).
     */
    if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
        reader = NULL;
        goto out;
    }
代码注释说,通常情况下, nr_loops会等于2,在开始读的时候,因为reader_page会插入一个空页面,造成该值等于3的情况.
两次循环的情况我们都知道: 刚开始进这个函数,nr_loops加1,假设reader_page中没有数据可读,切换进head_page,然后goto到起点,nr_loops变为2.
那如果nr_loops变为3的话,必须是切换进来的head_page为空,并且RB中有数据.
什么时候会满足这样的情况呢?
其实,这种情况,只需要在上一次reader操作时,head_page和commit_page重合,造成head_page不能前进,然后写操作继续进行,写下一个页面了.此时,再有reader去读的时候,会有head_page是空的,但它后面还有数据的情况.
 
另外,我们这里还需要注意一下这个问题,如下代码所示:
 
    switch (event->type) {
    /*如果是一段填充数据*/
    case RINGBUF_TYPE_PADDING:
        /*是一段完全的空闲整充区*/
        if (rb_null_event(event)) {
            rb_inc_iter(iter);
            goto again;
        }
        /*是被忽略的内容*/
        rb_advance_iter(iter);
        return event;
为什么这里如果取出来的是填充数据,会被BUG_ON()呢,而在iter中,却没有呢?
其实,我们注意看一下代码,在rb_reader_event()中取页面的时候,如果发现read==commit,也就是取到填充位置,就会切换下一个页面进来,因此,在rb_reader_event()不可能会返回一个没有数据的页面.
 
另外,从代码中看来,reader读操作和写操作是可以同时进行的,因为reader不会修改页面的数据,但是write在写的时候就必须要跟reader保持同步了,因为reader会切换页面,write也会清空header页面,所以这时需要持有自旋锁保护.
从上面的代码中也可以看出,reader方式的读会依次清空RB中的数据页.
 
六: 小结
RB是一种高效的缓冲区操作,在理解代码的时候,需要考虑到各种临界条件,另外,在阅读代码的过程中,不是很简洁,很多函数都是的功能极其相似.

Linux内核跟踪之ring buffer的实现【转】的更多相关文章

  1. Linux内核跟踪之syscall tracer 【转】

    转自:http://blog.chinaunix.net/uid-20543183-id-1930847.html ------------------------------------------ ...

  2. Linux内核跟踪之trace框架分析【转】

    转自:http://blog.chinaunix.net/uid-20543183-id-1930846.html   ---------------------------------------- ...

  3. linux内核数据结构之kfifo

    1.前言 最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的.缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度.例如一个进程A产 ...

  4. linux内核数据结构之kfifo【转】

    1.前言 最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的.缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度.例如一个进程A产 ...

  5. Linux内核结构体--kfifo 环状缓冲区

    转载链接:http://blog.csdn.net/yusiguyuan/article/details/41985907 1.前言 最近项目中用到一个环形缓冲区(ring buffer),代码是由L ...

  6. Linux内核调试的方式以及工具集锦【转】

    转自:https://blog.csdn.net/gatieme/article/details/68948080 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原 ...

  7. Linux内核调试的方式以及工具集锦

    原文:https://blog.csdn.net/gatieme/article/details/68948080 CSDN GitHubLinux内核调试的方式以及工具集锦 LDD-LinuxDev ...

  8. linux内核分析作业3:跟踪分析Linux内核的启动过程

    内核源码目录 1. arch:录下x86重点关注 2. init:目录下main.c中的start_kernel是启动内核的起点 3. ipc:进程间通信的目录 实验 使用实验楼的虚拟机打开shell ...

  9. linux内核学习之三 跟踪分析内核的启动过程

    一   前期准备工作       1 搭建环境 1.1下载内核源代码并编译内核 创建目录,并进入该目录: 下载源码: 解压缩,并进入该目录:xz -d linux-3.18.6.tar.xz tar ...

随机推荐

  1. variant conversion error for variable v23

    excel数据导入到oracle数据库出现的问题 V23指的是excel列.,这列的数据长度超出或者类型与数据库表不一致导致的 解决方法,1.清空该列,再建个新列 2.用access  SQL查出长度 ...

  2. BZOJ1495 [NOI2006]网络收费 【树形dp + 状压dp】

    题目链接 BZOJ1495 题解 观察表格,实际上就是分\(A\)多和\(B\)两种情况,分别对应每个点选\(A\)权值或者\(B\)权值,所以成对的权值可以分到每个点上 所以每个非叶节点实际对应一个 ...

  3. 解题:CF983B pyramid

    题面 题目都告诉我们是“金字塔”了,不妨分析分析$f$的性质 $f(a_1,a_2)=f(a_1$ $xor$ $a_2)=a1$ $xor$ $a_2$ $f(a_1,a_2,a_3)=f(a_1$ ...

  4. 解题:POI 2012 Well

    题面 比较明显地能看出二分来,但是检查函数很难写.对于二分出的一个$mid$,我们要让它满足在$m$次操作内令序列中存在一个为零的位置,同时使得任意相邻的两项之差不超过$mid$ 第二项的检查比较好做 ...

  5. Chapter2(变量和基础类型)--C++Prime笔记

    数据类型选择的准则: ①当明确知晓数值不可能为负时,选用无符号类型. ②使用int执行整数运算.在实际应用中,short常常显得太小而long一般和int有一样的尺寸.如果运算范围超过int的表示范围 ...

  6. 安装JDK、Tomcat、Maven’详细步骤

    安装JDK 1.首先在官网下载JDK1.8包并解压(随便你装哪个版本) 2.下面开始配置环境变量  此电脑-右键-属性-高级系统配置  点击环境变量 将会看到以下界面 在系统变量下“新建” 变量名(J ...

  7. Djang下载虚拟环境设置

    下载安装 教程地址 https://docs.djangoproject.com/en/1.11/howto/windows/ 有一个步骤是创建虚拟环境 创建环境 mkvirtualenv env1 ...

  8. Hadoop基础-Hadoop快照管理

    Hadoop基础-Hadoop快照管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.快照的作用 快照可以迅速对文件(夹)进行备份,不产生新文件,使用差值存储,默认是禁用状态. ...

  9. 转:Block原理及引用循环问题

    2010年WWDC发布iOS4时Apple对Objective-C进行了一次重要的升级:支持Block.说到底这东西就是闭包,其他高级语音例如Java和C++已有支持,第一次使用Block感觉满简单好 ...

  10. 科学计算三维可视化---Mayavi可视化实例

    一:Dragon绘制实例(三维扫描的绘制) 三维扫描主要用于对物体空间外形结构以及色彩进行扫描,用以获得物体表面的空间坐标, 他的主要意义在于能够将实物的立体信息转换为计算机能够直接处理的数据信号,为 ...